Skip to main content
Log in

The impact of the carrier concentration and recombination current on the p+pn CZTS thin film solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

One of the main causes of low performance of Cu2ZnSnS4 (CZTS) based thin film solar cells is its high recombination current. In this paper, the effects of the carrier concentration and recombination current in the CZTS thin film solar cells have been carefully scrutinized. In continue, for comparison and validation, two simulated structures based on the CZTS absorber layer have been reproduced and the influence of the absorber layer defects and carrier concentration has been analyzed. In this work, two different structures using p+-CZTS intermediate layer (between the CZTS absorber layer and Mo back-contact) and dual CZTS layer have been proposed and optimized to decrease recombination and extract the desired photovoltaic parameters. By using and optimizing these structures as p+pn junction, 15.62% and 19.08% efficiencies have been achieved in p+-CZTS intermediate layer and p+pn CZTS dual layer structures, respectively. The highest efficiency of dual absorber based solar cell is achieved when the carrier concentration of the p+-CZTS and p-CZTS absorber layers is 1 × 1018 cm−3 and 5 × 1015 cm−3, respectively. Moreover, the optimum thickness of the p+-CZTS and p-CZTS absorber layers in p+pn CZTS dual layer structure is 1 and 1.5 µm, respectively. Finally, the total recombination current density is reduced to 2.05 mA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adewoyin, A.D., Olopade, M.A., Chendo, M.: Prediction and optimization of the performance characteristics of CZTS thin film solar cell using band gap grading. Opt. Quant. Electron. 49, 336 (2017a)

    Article  Google Scholar 

  • Adewoyin, A.D., Olopade, M.A., Chendo, M.: Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik 133, 122–131 (2017b)

    Article  ADS  Google Scholar 

  • Adewoyin, A.D., Olopade, M.A., Oyebola, O.O., Chendo, M.A.: Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D. Optik 176, 132–142 (2019)

    Article  ADS  Google Scholar 

  • Akdim, B., Pachter, R., Mou, S.: Theoretical analysis of the combined effects of sulfur vacancies and analyte adsorption on the electronic properties of single-layer MoS2. Nanotechnology 27, 185701 (2016)

    Article  ADS  Google Scholar 

  • Altamura, G., Wang, M., Choy,-L.: Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu 2 ZnSn (S, Se) 4 solar cells. Sci. Rep. 6, 22109 (2016)

    Article  ADS  Google Scholar 

  • Bahrami, A., Mohammadnejad, S., Soleimaninezhad, S.: Photovoltaic cells technology: principles and recent developments. Opt. Quant. Electron. 45, 161–197 (2013)

    Article  Google Scholar 

  • Bourdais, S., Choné, C., Delatouche, B., Jacob, A., Larramona, G., Moisan, C., Lafond, A., Donatini, F., Rey, G., Siebentritt, S.: Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016)

    Article  Google Scholar 

  • Boutebakh, F.Z., Lamri Zeggar, M., Attaf, N., Aida, M.S.: Electrical properties and back contact study of CZTS/ZnS heterojunction. Optik 144, 180–190 (2017)

    Article  ADS  Google Scholar 

  • Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    Article  ADS  Google Scholar 

  • Burgelman, M., Koen, D., Alex, N., Johan, V., Stefaan, D.: SCAPS manual. In: February (2016)

  • Chelvanathan, P., Shahahmadi, S.A., Ferdaous, M.T., Sapeli, M.M.I., Sopian, K., Amin, N.: Controllable formation of MoS2 via preferred crystallographic orientation modulation of DC-sputtered Mo thin film. Mater. Lett. 219, 174–177 (2018)

    Article  Google Scholar 

  • Chen, S., Walsh, A., Yang, J.-H., Gong, X.-G., Sun, L., Yang, P.-X., Chu, J.-H., Wei, S.-H.: Compositional dependence of structural and electronic properties of Cu2ZnSn (S, Se) 4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011)

    Article  ADS  Google Scholar 

  • Chen, S., Walsh, A., Gong, X.-G., Wei, S.-H.: Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013)

    Article  Google Scholar 

  • Chen, H.-J., Sheng-Wen, F., Shih-Hsiung, W., Tsai, T.-C., Hsuan-Ta, W., Shih, C.-F.: Impact of SnS buffer layer at Mo/Cu2ZnSnS4 interface. J. Am. Ceram. Soc. 99, 1808–1814 (2016)

    Article  Google Scholar 

  • Cherouana, A., Labbani, R.: Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl. Surf. Sci. 424, 251–255 (2017)

    Article  ADS  Google Scholar 

  • Cozza, D., Ruiz, C.M., Duché, D., Simon, J.J., Escoubas, L.: Modeling the back contact of Cu2ZnSnSe4 solar cells. IEEE J. Photovolt. 6, 1292–1297 (2016)

    Article  Google Scholar 

  • Crovetto, A., Hansen, O.: What is the band alignment of Cu2ZnSn (S, Se)4 solar cells? Sol. Energy Mater. Sol. Cells 169, 177–194 (2017)

    Article  Google Scholar 

  • Degen, S., Krupski, A., Kralj, M., Langner, A., Becker, C., Sokolowski, M., Wandelt, K.: Determination of the coincidence lattice of an ultra thin Al2O3 film on Ni3Al (1 1 1). Surf. Sci. 576, L57–L64 (2005)

    Article  ADS  Google Scholar 

  • Dey, M., Dey, M., Rahman, N., Tasnim, I., Chakma, R., Aimon, U., Matin, M.A., Amin, N.: Numerical modeling of SnS ultra-thin solar cells. In: 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), 911-15. IEEE (2017)

  • Ericson, T., Scragg, J.J., Hultqvist, A., Wätjen, J.T., Szaniawski, P., Törndahl, T., Platzer-Björkman, C.: Zn (O, S) Buffer layers and thickness variations of CdS buffer for Cu2ZnSnS4 solar cells. IEEE J. Photovolt. 4, 465–469 (2013)

    Article  Google Scholar 

  • Ferdaous, M.T., Shahahmadi, S.A., Chelvanathan, P., Md Akhtaruzzaman, F.H., Alharbi, K.S., Tiong, S.K., Amin, N.: Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis. Sol. Energy 178, 162–172 (2019)

    Article  ADS  Google Scholar 

  • Frazão, M., Silva, J.A., Lobato, K., Serra, J.M.: Electroluminescence of silicon solar cells using a consumer grade digital camera. Measurement 99, 7–12 (2017)

    Article  Google Scholar 

  • Gao, S., Jiang, Z., Li, W., Jianping Ao, Yu., Zeng, Y.S., Zhang, Y.: Interfaces of high-efficiency kesterite Cu2ZnSnS (e)4 thin film solar cells. Chin. Phys. B 27, 018803 (2018)

    Article  ADS  Google Scholar 

  • Giraldo, S., Jehl, Z., Placidi, M., Izquierdo-Roca, V., Pérez-Rodríguez, A., Saucedo, E.: Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 31, 1806692 (2019)

    Article  Google Scholar 

  • Green, M.A., Dunlop E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 54). In: Progress in Photovoltaics: Research and Applications, p. 27 (2019)

  • Grossberg, M., Krustok, J., Hages, C.J., Bishop, D., Gunawan, O., Scheer, R., Lyam, S.M., Hempel, H., Levcenko, S., Unold, T.: The electrical and optical properties of kesterites. J. Phys. Energy 21, 044002 (2019)

    Article  Google Scholar 

  • Guo, H., Ma, C., Zhang, K., Jia, X., Li, Y., Yuan, N., Ding, J.: The fabrication of Cd-free Cu2ZnSnS4-Ag2ZnSnS4 heterojunction photovoltaic devices. Sol. Energy Mater. Sol. Cells 178, 146–153 (2018)

    Article  Google Scholar 

  • Haass, S.G., Andres, C., Figi, R., Schreiner, C., Bürki, M., Romanyuk, Y.E., Tiwari, A.N.: Complex interplay between absorber composition and alkali doping in high-efficiency kesterite solar cells. Adv. Energy Mater. 8, 1701760 (2018)

    Article  Google Scholar 

  • Hossain, M.I.: Prospecs of CZTS solar cells from the perspective of material properties, fabrication methods and current research challenges. Chalcogenide Lett. 9, 231–242 (2012)

    Google Scholar 

  • Hossain, M.I., Chelvanathan, P., Mukter Zaman, M.R., Karim, M.A., Amin, N.: Prospects of indium sulphide as an alternative to cadmium sulphide buffer layer in CIS based solar cells from numerical analysis. Chalcog. Lett. 8, 315–324 (2011)

    Google Scholar 

  • Khattak, Y.H., Baig, F., Toura, H., Ullah, S., Marí, B., Beg, S., Ullah, H.: Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell. Curr. Appl. Phys. 18, 633–641 (2018)

    Article  ADS  Google Scholar 

  • Khelifi, S., Verschraegen, J., Burgelman, M., Belghachi, A.: Numerical simulation of the impurity photovoltaic effect in silicon solar cells. Renew. Energy 33, 293–298 (2008)

    Article  Google Scholar 

  • Khoshsirat, N., Yunus, N.A.: Numerical analysis of In2S3 layer thickness, band gap and doping density for effective performance of a CIGS solar cell using SCAPS. J. Electron. Mater. 45, 5721–5727 (2016)

    Article  ADS  Google Scholar 

  • Levcenko, S., Just, J., Alex Redinger, G., Larramona, S.B., Dennler, G., Jacob, A., Unold, T.: Deep defects in Cu2ZnSn(S, Se)4 solar cells with varying Se content. Phys. Rev. Appl. 5, 024004 (2016)

    Article  ADS  Google Scholar 

  • Li, W., Chen, J., Cui, H., Liu, F., Hao, X.: Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells. Mater. Lett. 130, 87–90 (2014)

    Article  Google Scholar 

  • Limpens, R., Luxembourg, S.L., Weeber, A.W., Gregorkiewicz, T.: Emission efficiency limit of Si nanocrystals. Sci. Rep. 6, 19566 (2016)

    Article  ADS  Google Scholar 

  • Lin, P., Lin, L., Jinling, Yu., Cheng, S., Peimin, L., Zheng, Q.: Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D. J. Appl. Sci. Eng. 17, 383–390 (2014)

    Google Scholar 

  • Lindroos, J., Savin, H.: Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016)

    Article  Google Scholar 

  • Liu, Fangyang, Huang, Jialiang, Sun, Kaiwen, Yan, Chang, Shen, Yansong, Park, Jongsung, Aobo, Pu, Zhou, Fangzhou, Xu, Liu, Stride, J.A.: Beyond 8% ultrathin kesterite Cu2 ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Mater 9, e401 (2017)

    Article  Google Scholar 

  • Lundberg, O., Edoff, M., Stolt, L.: The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films 480, 520–525 (2005)

    Article  ADS  Google Scholar 

  • Maklavani, S.E., Mohammadnejad, S.: Enhancing the open-circuit voltage and efficiency of CZTS thin-film solar cells via band-offset engineering. Opt. Quant. Electron. 52, 72 (2020)

    Article  Google Scholar 

  • Marlein, J., Decock, K., Burgelman, M.: Analysis of electrical properties of CIGSSe and Cd-free buffer CIGSSe solar cells. Thin Solid Films 517, 2353–2356 (2009)

    Article  ADS  Google Scholar 

  • Miller, D.W., Warren, C.W., Gunawan, O., Gokmen, T., Mitzi, D.B., Cohen, J.D.: Electronically active defects in the Cu2ZnSn (Se, S)4 alloys as revealed by transient photocapacitance spectroscopy. Appl. Phys. Lett. 101, 142106 (2012)

    Article  ADS  Google Scholar 

  • Mohammadnejad, S., Parashkouh, A.B.: CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer. Appl. Phys. A 123, 758 (2017)

    Article  ADS  Google Scholar 

  • Nagaoka, A., Yoshino, K., Aoyagi, K., Minemoto, T., Nose, Y., Taniyama, T., Kakimoto, K., Miyake, H.: Thermo-physical properties of Cu2ZnSnS4 single crystal. J. Cryst. Growth 393, 167–170 (2014)

    Article  ADS  Google Scholar 

  • Nakamura, Motoshi, Yamaguchi, Koji, Kimoto, Yoshinori, Yasaki, Yusuke, Kato, Takuya, Sugimoto, Hiroki: Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 5, 1863–1867 (2019)

    Article  Google Scholar 

  • Narasinha, S., Rohatgi, A.: Optimized aluminum back surface field techniques for silicon solar cells. In: Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, pp. 63–66. IEEE (1997)

  • Neuschitzer, M., Lienau, K., Guc, M., Barrio, L.C., Haass, S., Prieto, J.M., Sanchez, Y., Espindola-Rodriguez, M., Romanyuk, Y., Perez-Rodriguez, A.: Towards high performance Cd-free CZTSe solar cells with a ZnS (O, OH) buffer layer: the influence of thiourea concentration on chemical bath deposition. J. Phys. D Appl. Phys. 49, 125602 (2016)

    Article  Google Scholar 

  • Opanasyuk, A.S., Kurbatov, D.I., Ivashchenko, M.M., Yu Protsenko, I., Cheong, H.: Properties of the window layers for the CZTSe and CZTS based solar cells. J. Nano- Electron. Phys. 4, 1024-1 (2012)

    Google Scholar 

  • Pal, K., Singh, P., Bhaduri, A., Thapa, K.B.: Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: a review. Sol. Energy Mater. Sol. Cells 196, 138–156 (2019)

    Article  Google Scholar 

  • Pandey, S.K., Mukherjee, S.: Device modeling and optimization of high-performance thin film CIGS solar cell with MgxZn1−x O buffer layer. In: 2013 IEEE 5th International on Nanoelectronics Conference (INEC), pp. 353–56. IEEE (2013)

  • Park, H.H., Heasley, R., Sun, L., Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Sinsermsuksakul, P., Chua, D., Buonassisi, T.: Co-optimization of SnS absorber and Zn (O, S) buffer materials for improved solar cells. Prog. Photovolt. Res. Appl. 23, 901–908 (2015)

    Article  Google Scholar 

  • Patel, M., Ray, A.: Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—a numerical simulation approach and comparison to experiments. Physica B 407, 4391–4397 (2012)

    Article  ADS  Google Scholar 

  • Pawar, B.S., Pawar, S.M., Shin, S.W., Choi, D.S., Park, C.J., Kolekar, S.S., Kim, J.H.: Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films. Appl. Surf. Sci. 257, 1786–1791 (2010)

    Article  ADS  Google Scholar 

  • Ramanujam, J., Amit Verma, B., González-Díaz, R.G.-L., del Cañizo, C., García-Tabarés, E., Rey-Stolle, I., Granek, F., Korte, L., Tucci, M.: Inorganic photovoltaics—planar and nanostructured devices. Prog. Mater Sci. 82, 294–404 (2016)

    Article  Google Scholar 

  • Redinger, A., Mousel, M., Wolter, M.H., Valle, N., Siebentritt, S.: Influence of S/Se ratio on series resistance and on dominant recombination pathway in Cu2ZnSn (SSe)4 thin film solar cells. Thin Solid Films 535, 291–295 (2013)

    Article  ADS  Google Scholar 

  • Rizi, M.T., Shahrokh Abadi, M.H., Ghaneii, M.: Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer. Optik 155, 121–132 (2018)

    Article  ADS  Google Scholar 

  • Romanyuk, Y.E., Haass, S.G., Giraldo, S., Placidi, M., Tiwari, D., Fermin, D.J., Hao, X., Xin, H., Schnabel, T., Kauk-Kuusik, M.: Doping and alloying of kesterites. J. Phys. Energy 1, 044004 (2019)

    Article  ADS  Google Scholar 

  • Scragg, J.J., Tomas Kubart, J., Wätjen, T., Ericson, T., Linnarsson, M.K., Platzer-Björkman, C.: Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem. Mater. 25, 3162–3171 (2013)

    Article  Google Scholar 

  • Seol, J.-S., Lee, S.-Y., Lee, J.-C., Nam, H.-D., Kim, K.-H.: Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)

    Article  Google Scholar 

  • Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progr Photovolt Res Appl 21, 72–76 (2013)

    Article  Google Scholar 

  • Shin, D., Saparov, B., Mitzi, D.B.: Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 7, 1602366 (2017)

    Article  Google Scholar 

  • Siebentritt, S.: Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1–4 (2013)

    Article  ADS  Google Scholar 

  • Simya, O.K., Mahaboobbatcha, A., Balachander, K.: A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015)

    Article  ADS  Google Scholar 

  • Sinha, S., Nandi, D.K., Kim, S.-H., Heo, J.: Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review. Sol. Energy Mater. Sol. Cells 176, 49–68 (2018)

    Article  Google Scholar 

  • Sun, K., Yan, C., Liu, F., Huang, J., Zhou, F., Stride, J.A., Green, M., Hao, X.: Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv. Energy Mater. 6, 1600046 (2016)

    Article  Google Scholar 

  • Tajima, S., Kataoka, K., Takahashi, N., Kimoto, Y., Fukano, T., Hasegawa, M., Hazama, H.: Direct measurement of band offset at the interface between CdS and Cu2ZnSnS4 using hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 103, 243906 (2013)

    Article  ADS  Google Scholar 

  • Wanda, M.D., Ouédraogo, S., Ndjaka, J.M.B.: Theoretical analysis of minority carrier lifetime and Cd-free buffer layers on the CZTS based solar cell performances. Optik 183, 284–293 (2019)

    Article  ADS  Google Scholar 

  • Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J., Bojarczuk, N.A., Mitzi, D., Guha, S.: Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97, 143508 (2010)

    Article  ADS  Google Scholar 

  • Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with efficiency. Adv. Energy Mater. 4, 1301465 (2014)

    Article  Google Scholar 

  • Yan, C., Liu, F., Song, N., Ng, B.K., Stride, J.A., Tadich, A., Hao, X.: Band alignments of different buffer layers (CdS, Zn (O, S), and In2S3) on Cu2ZnSnS4. Appl. Phys. Lett. 104, 173901 (2014)

    Article  ADS  Google Scholar 

  • Yan, C., Liu, F., Sun, K., Song, N., Stride, J.A., Zhou, F., Hao, X., Green, M.: Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. Sol. Energy Mater. Sol. Cells 144, 700–706 (2016)

    Article  Google Scholar 

  • Yan, C., Sun, K., Liu, F., Huang, J., Zhou, F., Hao, X.: Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Sol. Energy Mater. Sol. Cells 160, 7–11 (2017)

    Article  Google Scholar 

  • Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., Aobo, P., He, M., Liu, F., Eder, K.: Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764 (2018)

    Article  ADS  Google Scholar 

  • Yang, K.-J., Son, D.-H., Sung, S.-J., Sim, J.-H., Kim, Y.-I., Park, S.-N., Jeon, D.-H., Kim, J., Hwang, D.-K., Jeon, C.-W.: A band-gap-graded CZTSSe solar cell with 12.3% efficiency. J. Mater. Chem. A 4, 10151–10158 (2016)

    Article  Google Scholar 

  • Zhuk, S., Kushwaha, A., Wong, T.K., Masudy-Panah, S., Smirnov, A., Dalapati, G.K.: Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance. Sol. Energy Mater. Sol. Cells 171, 239–252 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Mohammadnejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enayati Maklavani, S., Mohammadnejad, S. The impact of the carrier concentration and recombination current on the p+pn CZTS thin film solar cells. Opt Quant Electron 52, 279 (2020). https://doi.org/10.1007/s11082-020-02407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02407-4

Keywords

Navigation