Skip to main content
Log in

Using a naive Bayes classifier to explore the factors driving the harmful dinoflagellate Karenia selliformis blooms in a southeastern Mediterranean lagoon

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The blooms of the toxic dinoflagellate Karenia selliformis can be predicted with accuracy derived from knowledge of the main forcing variables. A naive Bayes classifier modeling framework, a member of the Bayesian network family, is used to identify the phytoplankton community and the physical and meteorological parameters involving K. selliformis blooms in the eutrophic Boughrara Lagoon (BL), Tunisia. The proposed model takes into account the physical environment parameters (salinity, water temperature, tide amplitude), meteorological constraints (evaporation, air temperature, insolation, rainfall, atmospheric pressure, and humidity), phytoplankton groups (diatoms, dinoflagellates, cyanobacteria, Euglenophyceae), and the sampling months on K. selliformis blooms. The shift to highest salinity and atmospheric pressure, associated with reduced tide, are the most favorable conditions for K. selliformis blooms in BL. The results show that K. selliformis formed nearly monospecific blooms. A shift in species composition was pointed out between the bloom and non-bloom conditions. The Euglenophycea and some dinoflagellates like Peridinium minimum, Prorocentrum minimum, Prorocentrum micans, Prorocentrum gracile, Protoperidinium minutum, and Scrippsiella trochoidea appeared during blooms, whereas diatoms, diazotrophic cyanobacteria, and dinoflagellates (Akaskiwo sanguinea, Karlodinium veneficum, Gyrodinium spirale, Oxyrrhis marina, Polykrikos kofoidii) were observed under non-bloom conditions. This study highlighted the most favorable physical and meteorological conditions for K. selliformis bloom occurrences and also pointed out species indicators for bloom establishment and others for non-bloom conditions. Monitoring the dynamics of these species with the associated physical and meteorological variability offers valuable information to plan for the best options for prediction of potentially toxic blooms of K. selliformis and associated dystrophic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BL:

Boughrara Lagoon

HABs:

Harmful algal blooms

GLMM:

Generalized linear mixed-effect model

NB:

Naive Bayes classifier

CPT:

Conditional probability table

INM:

Tunisian National Meteorological Institute

SamIam:

Sensitivity Analysis, Modeling, Inference And More software

G. spirale :

Gyrodinium spirale

K. selliformis. Ks:

Karenia selliformis

K. mikimotoi :

Karenia mikimotoi

K. brevis :

Karenia brevis

K. veneficum :

Karlodinium veneficum

P. micans :

Prorocentrum micans

P. minimum :

Prorocentrum minimum

S. trochoidea :

Scrippsiella trochoidea

MTDs:

Mixotrophic dinoflagellates

HTDs:

Heterotrophic dinoflagellates

References

  • Aloui L, Kossentini M, Zouari S (2018) Characterization of aromatic compounds and antioxidant activity of essential oils from Tunisian Pituranthos tortuosus (Coss.) Maire (Apiaceae). J Essent Oil Bear Pl 21:769–778

    Article  Google Scholar 

  • Anderson DM, Hoagland P, Kaoru Y, White AW (2000) Estimated annual economic impacts from harmful algal blooms (HABs) in the United States. WHOI-2000-11. Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts. rs|http://www.redtide.whoi.edu/hab/pertinentinfo/Economics_Report.pdf|url

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Basti L, Nagai S, Go J, Okano S, Nagai K, Watanabe R, Suzuki T, Tanaka Y (2015) Differential inimical effects of Alexandrium spp. and Karenia spp. on cleavage, hatching, and two larval stages of Japanese pearl oyster Pinctada fucatamartensii. Harmful Algae 43:1–12

    Article  Google Scholar 

  • Behrenfield MJ, O'Malley RT, Siegel DA (2006) Climate-driven trends in contemporary ocean productivity. Nat 444:752–755

    Article  Google Scholar 

  • Béjaoui B, Ben Ismail S, Othmani A, Ben Abdallah-Ben Hadj Hamida O, Chevalier C, Feki-Sahnoun W, Harzallah A, Ben Hadj Hamida N, Bouaziz R, Dahech S, Diaz F, Tounsi K, Sammari C, Pagano M, Bel Hassen M (2019) Synthesis review of the Gulf of Gabes (eastern Mediterranean Sea, Tunisia): morphological, climatic, physical oceanographic, biogeochemical and fisheries features. Estuar Coast Shelf Sci 219:395–408

    Article  Google Scholar 

  • Ben Aoun Z, Farhat F, Chouba L, Hadj Ali MS (2007) Investigation on possible chemical pollution of the Boughrara Lagoon, south of Tunisia, by chemical wastes. Bull l’Inst Natl Sci Tech Mer Salammbô 34:119–127

    Google Scholar 

  • Ben Ismail S, Cristèle C, Atoui A, Devenon JL, Sammari C, Pagano M (2018) Water masses exchanges within Boughrara lagoon- Gulf of Gabes system.1st Euro-Mediterranean Conference for Environmental Integration (EMCEI). ISSN: 2522-8714

  • Ben Naila I, Hamza A, Gdoura R, Diogene J, Iglesia P (2012) Prevalence and persistence of gymnodimines in clams from the Gulf of Gabès (Tunisia) studied by mouse bioassay and LC-MS/MS. Harmful Algae 18:56–64

    Article  Google Scholar 

  • Benrejeb-Jenhani A, Romdhane MS (2002) Impact des perturbations anthropiques sur l’évolution du phytoplancton de la lagune de Boughrara, (Tunisie). Bull l’Inst Natl Sci Tech Mer Salammbô 29:65–75

    Google Scholar 

  • Biegalski SR, Villareal TA (2005) Correlations between atmospheric aerosol trace element concentrations and red tide at Port Aransas, Texas, on the Gulf of Mexico. J Radioanal Nucl Chem 263:767–772

    Article  Google Scholar 

  • Brahim M, Mastouri A, Akrout F (1994) Lagune de Boughrara: bilan d’une année de surveillance hydrobiologique. Bull Inst NatnScien Tech Mer de Salammbô 23:1

    Google Scholar 

  • Brand LE, Compton A (2007) Long-term increase in Karenia brevis abundance along the southwest Florida coast. Harmful Algae 6:232–252

    Article  Google Scholar 

  • Brand LE, Campbell L, Bresnan E (2012) Karenia: the biology and ecology of a toxic genus. Harmful Algae 14:156–178

    Article  Google Scholar 

  • Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8:21–32

    Article  Google Scholar 

  • Bronk DA, Sanderson MP, Mulholland MR, Heil CA, O’Neil JM (2004) Organic and inorganic nitrogen uptake kinetics in field populations dominated by Karenia brevis. In: Steidinger KA, Landsberg JH, Tomas CR, Vargo GA (eds) Harmful algae 2002. Proc 10th International Conference on Harmful Algae. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 80–82

    Google Scholar 

  • Carreto JL, Seguel M, Montoya NG, Clément A, Carignan MO (2001) Pigment profile of the ichthyotoxic dinoflagellate Gymnodinium sp. from a massive bloom in southern Chile. J Plankton Res 23:1171–1175

    Article  Google Scholar 

  • Chan H, Darwiche A (2004) Sensitivity analysis in Bayesian networks: from single to multiple parameters. In: Chickering M, Halpern J (eds) Proceedings of the 20th conference on uncertainty in artificial intelligence. AUAI Press, Arlington, pp 67–75

    Google Scholar 

  • Clement A, Miriam S, Arzul G, Guzman L, Alarcon C (2001) Widespread outbreak of a haemolytic, ichthyotoxic Gymnodinium sp. in southern Chile. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewis RJ (eds) Proceedings of the 9th international symposium on harmful algal blooms. Hobart, Tasmania, pp 66–69

    Google Scholar 

  • Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309–347

    Google Scholar 

  • Crespo BG, Figueiras FG, Groom S (2007) Role of acrossshelf currents in the dynamics of harmful dinoflagellate blooms in the northwestern Iberian upwelling. Limnol Oceanogr 52:2668−2678

  • Dammak-Zouari H, Hamza A, Bouain A (2009) Gymnodiniales in the Gulf of Gabes (Tunisia). Cah Biol Mar 50:153–170

    Google Scholar 

  • Davidson K, Miller P, Wilding T, Shutler J, Bresnan E, Kennington K, Swan S (2009) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae 8:349–361

    Article  Google Scholar 

  • Drira Z, Chaari D, Hamza A, Bel Hassen M, Pagano M, Ayadi H (2016) Diazotrophic cyanobacteria signatures and their relationship to hydrographic conditions in the Gulf of Gabes, Tunisia. J Mar Biol Assoc U Kingd 97:69–80

    Article  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification, second edn. Wiley Interscience, New York

    Google Scholar 

  • Engesmo A, Strand D, Gran-Stadniczeñko S, Edvardsen BK, Medlin L, Eikrem W (2018) Development of a qPCR assay to detect and quantify ichthyotoxic flagellates along the Norwegian coast, and the first Norwegian record of Fibrocapsa japonica (Raphidophyceae). Harmful Algae 75:105–117

    Article  Google Scholar 

  • Feki W, Hamza A, Bel Hassen M, Rebai A (2008) Les efflorescences phytoplanctoniques dans le golfe de Gabès (Tunisie) au cours de dix ans de surveillance (1995-2005). Bull l’Inst Natl Sci Tech Mer Salammbô 35:105–116

    Google Scholar 

  • Feki W, Hamza A, Frossard V, Abdennadher M, Hannachi I, Jacquot M, Belhassen M, Aleya L (2013) What are the potential drivers of blooms of the toxic dinoflagellate Karenia selliformis? A 10-year study in the Gulf of Gabès, Tunisia, southwestern Mediterranean Sea. Harmful Algae 23:8–18

    Article  Google Scholar 

  • Feki-Sahnoun W, Hamza A, Mahfoudi M, Rebai A, Bel Hassen M (2014) Long-term microphytoplankton variability patterns using multivariate analyses: ecological and management implications. Environ Sci Pollut Res 21:11481–11499

    Article  Google Scholar 

  • Feki-Sahnoun W, Hamza A, Njah H, Barraj N, Mahfoudi M, Rebai A, Bel Hassen M (2017) Bayesian network approach to determine environmental factors controlling Karenia selliformis occurrences and blooms in the Gulf of Gabès, Tunisia. Harmful Algae 63:119–132

    Article  Google Scholar 

  • Feki-Sahnoun W, Njah H, Hamza A, Barraj N, Mahfoudi M, Rebai A, Bel Hassen M (2018) Using general linear model, Bayesian networks and naive Bayes classifier for prediction of Karenia selliformis occurrences and blooms. Ecol Inform 43:12–23

    Article  Google Scholar 

  • Fernandes JA, Irigoien X, Goikoetxea N, Lozano JA, Inza I, Pérez A, Bode A (2010) Fish recruitment prediction, using robust supervised classification methods. Ecol Model 221:338–352

    Article  Google Scholar 

  • Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29:131–163

    Article  Google Scholar 

  • Gentien P, Lunven M, Lazure P, Youenou A, Crassous MP (2007) Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Philos Trans R Soc Lond Ser B Biol Sci 362:1937–1946

    Article  Google Scholar 

  • Glibert PM, Burkholder JAM, Kana TM (2012) Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae 14:231–259

    Article  Google Scholar 

  • Guetat F, Sellem F, Akrout F, Brahim M, Atoui A, Ben Romdhane MS, Daly Yahia MN (2012) Etat environnemental de la lagune de Boughrara et ses alentours deux ans après les travaux d’aménagement et d’élargissement du pont d’el Kantara. Bull Inst NatnScien Tech Mer de Salammbô 39

  • Hamza A (2003) Le statut du phytoplancton dans le golfe de Gabès. University of Sfax, Tunisia, Dissertation

    Google Scholar 

  • Hamza A, El Abed A (1994) Les eaux colorées dans le golfe de Gabès: Bilan de six ans de surveillance (1989-1994). Bull l’Inst Natl Sci Tech Mer Salammbô 21:66–72

    Google Scholar 

  • Hamza A, Feki W, Bel Hassen M (2011) Seasonal patterns of phytoplankton abundance, hydrology and climatic conditions in Gabes Gulf (southern Tunisia). In: Briand, F. (Ed), Phytoplankton responses to Mediterranean environmental changes. CIESM (Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée) Workshop Monographs N°40, Monaco, pp. 33-36

  • Hamza IS, Feki-Sahnoun W, Hamza A, Bel Hassen M (2016) Long term characterization of Trichodesmium erythraeum blooms in Gabès Gulf (Tunisia). Cont Shelf Res 124:95–103

    Article  Google Scholar 

  • Hartman SE, Hartman MC, Hydes DJ, Smythe-Wright D, Gohin F, Lazure P (2014) The role of hydrographic parameters, measured from a ship of opportunity, in bloom formation of Karenia mikimotoi in the English Channel. J Mar Syst 140:39–49

    Article  Google Scholar 

  • He R, Weisberg RH (2002) Tides of the West Florida shelf. J Phys Oceanogr 32:3455–3473

    Article  Google Scholar 

  • Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197–243

    Google Scholar 

  • Heimburger LE, Lavigne H, Migon C, D’Ortenzio F, Estournel C, Coppola L, Miquel JC (2013) Temporal variability of vertical export flux at the DYFAMED time-series station (northwestern Mediterranean Sea). Prog Oceanogr 119:59–67

    Article  Google Scholar 

  • Hetland RD, Campbell L (2007) Convergent blooms of Karenia brevis along the Texas coast. Geophys Res Lett 34:L19604

    Article  Google Scholar 

  • Jensen FV (2001) Bayesian networks and decision graphs. Springer-Verlag, New York

    Book  Google Scholar 

  • Jeong HJ, Yoo YD, Park JY, Song JY, Kim ST, Lee SH, Kim KY, Yih WH (2005) Feeding by the phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat Microb Ecol 40:133–155

    Article  Google Scholar 

  • Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91

    Article  Google Scholar 

  • Jeong HJ, Kim TH, Yoo YD, Yoon EY, Kim JS, Seong KA, Kim KY, Park JY (2011) Grazing impact of heterotrophic dinoflagellates and ciliates on common red-tide euglenophyte Eutreptiella gymnastica in Masan Bay, Korea. Harmful Algae 10:576–588

    Article  Google Scholar 

  • Kang NS, Lee KH, Jeong HJ, Yoo YD, Seong KA, Potvin É, Hwang YJ, Yoon EY (2013) Red tides in Shiwha Bay, western Korea: A huge dike and tidal power plant established in a semi-enclosed embayment system. Harmful Algae 30S:S114–S130

  • Kchaou N, Elloumi J, Drira Z, Hamza A, Ayadi H, Bouain A, Aleya L (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar Coast Shelf Sci 83:414–424

    Article  Google Scholar 

  • Kharroubi A, Gargouri D, Baati H, Azri C (2011) Assessment of sediment quality in the Mediterranean Sea-Boughrara lagoon exchange areas (southeastern Tunisia): GIS approach-based chemometric methods. Environ Monit Assess 184:4001–4014

    Article  Google Scholar 

  • Kharroubi A, Gzam M, Jedoui Y (2012) Anthropogenic and natural effects on the water and sediments qualities of costal lagoons: case of the Boughrara Lagoon (Southeast Tunisia). Environ Earth Sci 67:1061–1067

    Article  Google Scholar 

  • Khedhri I, Djabou H, Afli A (2014) Trophic and functional organization of the benthic macrofauna in the lagoon of Boughrara – Tunisia (SW Mediterranean Sea). J Mar Biol Assoc UK 95:647–659

    Article  Google Scholar 

  • Khedhri I, Djabou H, Afli A (2016) Does increased connectivity with the Mediterranean Sea improve the ecological status of the macroinvertebrates in the lagoon of Boughrara (SW Mediterranean)? Community Ecol 17:156–166

    Article  Google Scholar 

  • Khedhri I, Afli A, Aleya L (2017) Structuring factors of the spatio-temporal variability of macrozoobenthos assemblages in a southern Mediterranean lagoon: how useful for bioindication is a multi-biotic indices approach? Mar Pollut Bull 114:515–527

    Article  Google Scholar 

  • Kramer S, Sorenson HW (1988) Recursive Bayesian estimation using piece-wise constant approximations. Automatica 24:789–801

    Article  Google Scholar 

  • Kubanek J, Hicks MK, Naar J, Villareal TA (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50:883–895

    Article  Google Scholar 

  • Landuyt D, Broekx S, D'Hondt R, Engelen G, Aertsens J, Goethals PLM (2013) A review of Bayesian belief networks in ecosystem service modelling. Environ Model Softw 46:1–11

    Article  Google Scholar 

  • Lenes JM, Heil CA (2010) A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico. J Plankton Res 32:1421–1431

    Article  Google Scholar 

  • Li A, Stoecker DK, Adolf JE (1999) Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat Microb Ecol 19:163–176

  • Li X, Yan T, Yu R, Zhou M (2019) A review of Karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism. Harmful Algae, 90:101702

  • Livingston J (2007) Phytoplankton bloom effects on a gulf estuary: water quality changes and biological response. Ecol Appl 17:S110–S128

    Article  Google Scholar 

  • Mangialajo L, Bertolotto R, Cattaneo-Vietti R, Chiantore M, Grillo C, Lemee R, Melchiorre N, Moretto P, Povero P, Ruggieri N (2008) The toxic benthic dinoflagellate Ostreopsis ovata: quantification of proliferation along the coastline of Genoa, Italy. Mar Pollut Bull 56:1209–1214

    Article  Google Scholar 

  • Mangialajo L, Ganzin N, Accoroni S, Asnaghi V, Blanfuné A, Cabrini M, Cattaneo-Vietti R, Chavanon F, Chiantore M, Cohu S, Costa E, Fornasaro D, Grossel H, Marco-Miralles F, Masó M, René A, Rossi AM, Sala MM, Thibaut T, Totti C, Vila M, Lemée R (2011) Trends in Ostreopsis proliferation along the northern Mediterranean coasts. Toxicon 57:408–420

    Article  Google Scholar 

  • Marrouchi R, Benoit E, Kharrat R, Molgó J (2009) Gymnodimines: a family of phycotoxins contaminating shellfish. In: Benoit E, Goudey-Perrière F, Marchot P, Servent D (Eds) Toxins and signalling. Châtenay-Malabry, SFET Editions, Collection Rencontres en Toxinologie, France, pp 79-83

  • Marrouchi R, Dziri F, Belayouni N, Hamza A, Benoit E, Molgó J, Kharrat R (2010) Quantitative determination of gymnodimine-A by high performance liquid chromatography in contaminated clams from Tunisia coastline. Mar Biotechnol 12:579–585

    Article  Google Scholar 

  • Medhioub A, Medhioub W, Amzil Z, Sibat M, Bardouil M, Ben Neila I, Mezghani S, Hamza A, Lassus P (2009) Influence on environmental parameters on Karenia selliformis toxin content in culture. Cah Biol Mar 50:333–342

    Google Scholar 

  • Medhioub W, Guéguen M, Lassus P, Bardouil M, Truquet P, Sibat M, Medhioub N, Soudant P, Kraiem M, Amzil Z (2010) Detoxification enhancement in the gymnodimine contaminated grooved carpet shell, Ruditapes decussatus (Linné). Harmful Algae 9:200–207

    Article  Google Scholar 

  • Mitchell AJ (2003) Reports of fish kills prior to 1900 in the United States. Rev Fish Sci 11:1–11

    Article  Google Scholar 

  • Mulholland MR, Bernhardt PW, Heil CA, Bronk DA, O’Neil JM (2006) Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico. Limnol Oceanogr 51:1762–1776

    Article  Google Scholar 

  • Myllymäki P, Silander T, Tirri H, Uronen P (2002) B-Course: a web-based tool for Bayesian and causal data analysis. Int J Artif Intell Tools 11:369–387

    Article  Google Scholar 

  • Nagarajan R, Scutari M, Lèbre S (2013) Bayesian networks in R with applications in systems biology. Springer-Verlag, New York

    Book  Google Scholar 

  • O’Boyle S, McDermott G, Silke J, Cusack C (2016) Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland. Harmful Algae 53:77–85

    Article  Google Scholar 

  • Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of a-tocopherol. J Appl Phycol 10:67–74

    Article  Google Scholar 

  • Olascoaga MJ (2010) Isolation on the West Florida shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico. Nonlinear Process Geophys 17:685–696

    Article  Google Scholar 

  • Olascoaga MJ, Rypina II, Brown MG, Beron-Vera FJ, Kocak H, Brand LE, Halliwell GR, Shay LK (2006) Persistent transport barrier on the West Florida shelf. Geophys Res Lett 33:L22603

    Article  Google Scholar 

  • Poulson KL, Sieg RD, Prince EK, Kubanek J (2010) Allelopathic compounds of a red tide dinoflagellate have species-specific and context-dependent impacts on phytoplankton. Mar Ecol Prog Ser 416:69–78

    Article  Google Scholar 

  • Prince EK, Myers TL, Kubanek J (2008a) Effects of harmful algal blooms on competitors: allelopathic mechanisms of the red tide dinoflagellate Karenia brevis. Limnol Oceanogr 53:531–541

    Article  Google Scholar 

  • Prince EK, Myers TL, Naar J, Kubanek J (2008b) Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate. Proc R Soc B Biol Sci 275:2733–2741

    Article  Google Scholar 

  • Prince EK, Poulson KL, Myers TL, Sieg RD, Kubanek J (2010) Characterization of allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae 10:3948

    Article  Google Scholar 

  • Qi YZ, Chen JF, Wang ZH, Xu N, Wang Y, Shen PP (2004) Some observations on harmful algal bloom (HAB) events along the coast of Guangdong southern China in 1998. Hydrobiologia 512:209–214

    Article  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing ISBN 3-900051-07-0. http://www.R-project.org/

  • Rabaoui L, Balti R, El Zrelli R, Tlig-Zouari S (2014) Assessment of heavy metal pollution in the Gulf of Gabes (Tunisia) using four mollusc species. Medit Mar Sci 15:45–58

    Article  Google Scholar 

  • Raine R, Wilson AM, Hermann G, Lacaze JP (2014) A comparison of assay techniques for the analysis of diarrheic shellfish poisoning toxins in shellfish. In: Sauve G (ed) Proceedings of the 8th International Conference on the Molluscan Shellfish Safety. Springer, New York, pp 205–213

    Chapter  Google Scholar 

  • Ribera d’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83

    Article  Google Scholar 

  • Robin RS, Kanuri VV, Muduli PR, Mishra RK, Jaikumar M, Karthikeyan P, Kumar CS, Kumar CS (2013) Dinoflagellate bloom of Karenia mikimotoi along the southeast Arabian Sea, bordering western India. J Ecosyst:463720 1–11

  • Romdhane MS, Daly Yahia Kefi O, Yahia A, Jenhani BR, Daly Yahia MN (1998) Ressources piscicoles et proliférations phytoplanctoniques dans les lagunes tunisiennes (Cas de Boughrara et Ghar El Melih). Centenaire de l'INAT 1998. Actes du 1er séminaire International, Mobilisation, exploitation et conservation des ressources naturelles. INAT. 511–526

  • Sammari C, Koutitonsky VG, Moussa M (2006) Sea level variability and tidal resonance in the Gulf of Gabès, Tunisia. Cont Shelf Res 26:338–350

    Article  Google Scholar 

  • Scutari M (2010) Learning Bayesian networks with the bnlearn R package. J Stat Softw 35:1–22

    Article  Google Scholar 

  • Seong KA, Jeong HJ, Kim S, Kim GH, Kang JH (2006) Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates on marine bacteria. Mar Ecol Prog Ser 322:85–97

    Article  Google Scholar 

  • Shan K, Shang M, Zhou B, Li L, Wang X, Yang H, Song L (2019) Application of Bayesian network including Microcystis morphospecies formicrocystin risk assessment in three cyanobacterial bloom-plagued lakes, China. Harmful Algae 83:14–24

    Article  Google Scholar 

  • Smayda TJ (2004) Harmful algal bloom communities in Scottish coastal waters: relationship to fish farming and regional comparisons-a review. Scottish Executive Environment Group, Scotland

    Google Scholar 

  • Solares C, Sanz AM (2007) Different Bayesian network models in the classification of remote sensing images. In: Yin H, Tino P, Corchado E, Byrne W, Yao X (eds) Intelligent data engineering and automated learning-IDEAL 2007. Springer, Germany, pp 10–16

    Chapter  Google Scholar 

  • Soto IM, Cambazoglu MK, Boyette AD, Broussard K, Sheehan D, Howden SD, Shiller AM, Dzwonkowski B, Hode L, Fitzpatrick PJ, Arnone RA, Mickle PF, Cressman K (2018) Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters. Harmful Algae 72:46–64

    Article  Google Scholar 

  • Sournia A (1995) Red tide and toxic marine phytoplankton of the world ocean: an inquiry into biodiversity. In: Lassus P, Arzul G, Erard E, Gentien C, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier, Paris, pp 103–112

    Google Scholar 

  • Steidinger KA, Vargo GA (1988) Marine dinoflagellate blooms: dynamics and impacts. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 373–401

    Google Scholar 

  • Stoecker DK, Tillmann U, Granéli E (2006) Phagotrophy in harmful algae. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer-Verlag, Berlin, pp 177–187

    Chapter  Google Scholar 

  • Stumpf RP, Ransibrahmanakul V, Steidinger KA, Tester PA (1998) Observations of sea surface temperature and winds associated with Florida, USA, red tides (Gymnodinium breve blooms). In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful Algae Proc. VII Int. Conf. on Harmful Algae, Vigo, 1997. Xunta de Galicia, Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 145–148

    Google Scholar 

  • Stumpf RP, Culver ME, Tester PA, Tomlinson M, Kirkpatrick GJ, Pederson BA, Truby E, Ransibrahmanakul V, Soracco M (2003) Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2:147–160

    Article  Google Scholar 

  • Tester PA, Steidinger KA (1997) Gymnodinium breve red tide blooms: initiation, transport, and consequences of surface circulation. Limnol Oceanogr 42:1039–1051

    Article  Google Scholar 

  • Tester PA, Wiles K, Varnam SM, Ortega GV, Dubois AM, Fuentes VA (2004) Harmful algal blooms in the western Gulf of Mexico: Karenia brevis is messin’ with Texas and Mexico. In: Steidinger KA, Landsberg JH, Tomas CR, Vargo GA (Eds) Harmful algae 2002. (St. Petersburg, Florida, USA): Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 41-43

  • Throndsen J, Hasle GR, Tangen K (2003) Norsk Kystplankton flora. Almater Forlag, Oslo, pp, 341

  • Thyng KM, Hetland RD, Ogle MT, Zhang X, Chen F, Campbell L (2013) Origins of Karenia brevis harmful algal blooms along the Texas coast. Limnol Oceanogr Fluids Environ 3:269–278

    Article  Google Scholar 

  • Turner JT, Graneli E (2006) Top down predation control on marine harmful algae. In: Graneli E, Turner JT (Eds) Ecology of harmful algae ecological studies189. Springer-Verlag, Berlin-Heidelberg, pp 355–366

  • Uribe JC, Ruiz M (2001) Gymnodinium brown tide in the Magellanic fjords, southern Chile. Rev Biol Mar Oceanogr 36:155–164

    Article  Google Scholar 

  • Utermöhl H (1958) Zurvervollkommnung der quantitativen phytoplankton-methodik. Int Verein Theoretische Angew Limnol 9:1–38

    Google Scholar 

  • Vargo GA (2009) A brief summary of the physiology and ecology of Karenia brevis Davis (G. Hansen and Moestrup comb. nov.) red tides on the West Florida Shelf and of hypotheses posed for their initiation, growth, maintenance, and termination. Harmful Algae 8:573–584

    Article  Google Scholar 

  • Villareal TA, Brainard MA, Mc Eachron LW (2001) Gymnodinium breve in the western Gulf of Mexico, resident versus advected populations as a seed stock for blooms. In: Hallegraef G, Blackburn SI, Bolch CJ, Lewis RJ (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 153–156

    Google Scholar 

  • Waggett RJ, Hardison RD, Tester PA (2012) Toxicity and nutritional inadequacy of Karenia brevis: synergistic mechanisms disrupt top-down grazer control. Mar Ecol Prog Ser 444:15–30

    Article  Google Scholar 

  • Walsby AE, Hayes PK, Boje R, Stahl LJ (1997) The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol 136:407–417

    Article  Google Scholar 

  • Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophys Res 106:11597–11612

    Article  Google Scholar 

  • Wells ML, Trainer VL, Smayda TJ, Karlson BSO, Trick CG, Kudela RM, Ishikawa A, Bernard S, Wulff A, Anderson DM, Cochlan WP (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  Google Scholar 

  • Yang ZB, Hodgkiss IJ (2001) Early 1998 massive fish kills and associated phytoplankton in the Port Shelter waters, Hong Kong. In: Hallengraeff GM, Blackburn SI, Bolch CJ, Lewis RJ (eds) Harmful algal blooms 2000. IOC of UNESCO, Paris, pp 70–73

    Google Scholar 

  • Yoo DY, Seong KA, Jeong HJ, Yih W, Rho J-R, Nam SW, Kim HS (2017) Mixotrophy in the marine red-tide cryptophytes Teleaulaxamphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68:105–117

    Article  Google Scholar 

  • Zarrouk W, Baccouri B, Taamalli W, Trigui A, Daouda D, Zarrouka M (2009) Oil fatty acid composition of eighteen Mediterranean olive varieties cultivated under the arid conditions of Boughrara (southern Tunisia). Grasas Aceites 60:498–506

    Article  Google Scholar 

  • Zhou ZX (2017) Simulating the seasonal succession and long-term changes of harmful algal blooms in the coastal waters adjacent to the Changjiang River estuary, Institute of Oceanology. Proc Chin Acad Med Sci Peking Union Med. Coll

  • Zhou ZX, Yu RC, Zhou MJ (2017) Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: a numerical simulation study. Ecol Model 360:150–162

Download references

Acknowledgments

The authors wish to thank Dr. Anja KREINER from National Marine Information and Research Centre, Swakopmund, Namibia, for having edited the English of this paper.

Funding

This work was supported by the EMORI (L’Education, la MObilité, la Recherche et l’Innovation)/MOBIDOC (MOBIlisation de DOCteur pour la réalisation de Travaux de recherche dans l’entreprise) funded project (post-doctoral grant for the first author) 2018–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Feki-Sahnoun.

Additional information

Responsible Editor: Dieter Wolf-Gladrow

Electronic supplementary material

ESM 1

(DOCX 20.7 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feki-Sahnoun, W., Njah, H., Hamza, A. et al. Using a naive Bayes classifier to explore the factors driving the harmful dinoflagellate Karenia selliformis blooms in a southeastern Mediterranean lagoon. Ocean Dynamics 70, 897–911 (2020). https://doi.org/10.1007/s10236-020-01365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01365-5

Keywords

Navigation