Skip to main content
Log in

Simulation and stability analysis of periodic flexible multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The dynamic response of many flexible multibody systems of practical interest is periodic. The investigation of such problems involves two intertwined tasks: first, the determination of the periodic response of the system and second, the analysis of the stability of this periodic solution. Starting from Hamilton’s principle, a unified solution procedure for continuous and discontinuous Galerkin methods is developed for these two tasks. In the proposed finite element formulation, the unknowns consist of the displacement and rotation components at the nodes, which are interpolated via the dual spherical linear interpolation technique. Periodic solutions are obtained by solving the discrete nonlinear equations resulting from continuous and discontinuous Galerkin methods. The monodromy matrix required for stability analysis is constructed directly from the Jacobian matrix of the solution process. Numerical examples are presented to validate the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Han, S.L., Bauchau, O.A.: Spectral collocation methods for the periodic solution of flexible multibody dynamics. Nonlinear Dyn. 92(4), 1599–1618 (2018)

    Google Scholar 

  2. Bailey, C.D.: Application of Hamilton’s law of varying action. AIAA J. 13, 1154–1157 (1975)

    MATH  Google Scholar 

  3. Leipholtz, H.H.E.: Space-time formulation of Hamilton’s law. Mech. Res. Commun. 9, 117–323 (1982)

    Google Scholar 

  4. Borri, M.: Helicopter rotor dynamics by finite element time approximation. Comput. Math. Appl. 12(1, Part A), 149–160 (1986)

    MathSciNet  Google Scholar 

  5. Bauchau, O.A., Hong, C.H.: Nonlinear response and stability analysis of beams using finite elements in time. AIAA J. 26(9), 1135–1142 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Hou, L.J., Peters, D.A.: Periodic trim solutions with \(hp\)-version finite elements in time. Math. Comput. Model. 17(3), 29–46 (1993)

    MATH  Google Scholar 

  7. Gudla, P.K., Ganguli, R.: Discontinuous Galerkin finite element in time for solving periodic differential equations. Comput. Methods Appl. Mech. Eng. 196(1), 682–696 (2006)

    MATH  Google Scholar 

  8. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Ec. Norm. Super. 12, 47–88 (1883)

    MATH  Google Scholar 

  9. Kane, T.R., Sobala, D.: A new method for attitude stabilization. AIAA J. 1(6), 1365–1367 (1963)

    Google Scholar 

  10. Dugundji, J., Wendell, J.H.: Some analysis methods for rotating systems with periodic coefficients. AIAA J. 21(6), 890–897 (1983)

    MATH  Google Scholar 

  11. Friedmann, P.P.: Numerical methods for determining the stability and response of periodic systems with applications to helicopter rotor dynamics and aeroelasticity. Comput. Math. Appl. 12A, 131–148 (1986)

    Google Scholar 

  12. Gaonkar, G.H., Peters, D.A.: Review of Floquet theory in stability and response analysis of dynamic systems with periodic coefficients. In: R.L. Bisplinghoff Memorial Symposium Volume on Recent Trends in Aeroelasticity, Structures and Structural Dynamics, Feb. 6–7, 1986, pp. 6–7. University Press of Florida, Gainesville (1986)

    Google Scholar 

  13. Wereley, N.M.: Analysis and control of linear periodically time varying systems. PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics (1991)

  14. Hill, G.W.: On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Math. 8(1), 1–36 (1886)

    MathSciNet  MATH  Google Scholar 

  15. Likins, P.W., Lindh, K.G.: Infinite determinant methods for stability analysis of periodic-coefficient differential equations. AIAA J. 8(4), 680–686 (1970)

    MATH  Google Scholar 

  16. Noah, S.T., Hopkins, G.R.: A generalized Hill’s method for the stability analysis of parametrically excited dynamic systems. J. Appl. Mech. 49(1), 217–223 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    Google Scholar 

  18. Bauchau, O.A., Nikishkov, Y.G.: An implicit Floquet analysis for rotorcraft stability evaluation. J. Am. Helicopter Soc. 46, 200–209 (2001)

    Google Scholar 

  19. Bauchau, O.A., Wang, J.L.: Stability analysis of complex multibody systems. J. Comput. Nonlinear Dyn. 1(1), 71–80 (2006)

    Google Scholar 

  20. Bauchau, O.A., Han, S.L.: Flexible joints in structural and multibody dynamics. Mech. Sci. 4(1), 65–77 (2013)

    Google Scholar 

  21. Sonneville, V., Brüls, O., Bauchau, O.A.: Interpolation schemes for geometrically exact beams: a motion approach. Int. J. Numer. Methods Eng. 112(9), 1129–1153 (2017)

    MathSciNet  Google Scholar 

  22. Han, S.L., Bauchau, O.A.: On the global interpolation of motion. Comput. Methods Appl. Mech. Eng. 337(10), 352–386 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Hochstadt, H.: Differential Equations. Dover Publications, New York (1964)

    MATH  Google Scholar 

  24. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & Sons, New York (1979)

    MATH  Google Scholar 

  25. Trefethen, L.N.: Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, Philadelphia (2012)

    MATH  Google Scholar 

  26. Brodsky, V., Shoham, M.: Dual numbers representation of rigid body dynamics. Mech. Mach. Theory 34, 975–991 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Han, S.L., Bauchau, O.A.: Manipulation of motion via dual entities. Nonlinear Dyn. 85(1), 509–524 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Dimentberg, F.M.: The screw calculus and its applications. Technical Report AD 680993, Clearinghouse for Federal and Scientific Technical Information, Virginia, USA (April 1968)

  29. Géradin, M., Cardona, A.: Flexible Multibody System: A Finite Element Approach. John Wiley & Sons, New York (2001)

    Google Scholar 

  30. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht, Heidelberg, London, New York (2011)

    MATH  Google Scholar 

  31. Kavan, L., Žára, J.: Spherical blend skinning: a real-time deformation of articulated models. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D ’05, New York, NY, USA, pp. 9–16 (2005)

    Google Scholar 

  32. Bauchau, O.A., Choi, J.Y.: The vector parameterization of motion. Nonlinear Dyn. 33(2), 165–188 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Han, S.L., Bauchau, O.A.: Discontinuous Galerkin method and dual-SLERP for time integration of flexible multibody dynamics. J. Comput. Nonlinear Dyn. (2020), to appear

  34. Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, Inc., New York (1970)

    MATH  Google Scholar 

  35. Zhong, W.X.: Duality System in Applied Mechanics and Optimal Control. Kluwer Academic Publishers, Boston, Dordrecht, New York, London (2004)

    MATH  Google Scholar 

  36. Borri, M., Ghiringhelli, G.L., Lanz, M., Mantegazza, P., Merlini, T.: Dynamic response of mechanical systems by a weak Hamiltonian formulation. Comput. Struct. 20(1), 495–508 (1985)

    MATH  Google Scholar 

  37. Borri, M., Bottasso, C.L.: A general framework for interpreting time finite element formulations. Comput. Mech. 13, 133–142 (1993)

    MATH  Google Scholar 

  38. Bottasso, C.L., Dopico, D., Trainelli, L.: On the optimal scaling of index-three DAEs in multibody dynamics. Multibody Syst. Dyn. 19, 3–20 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Bauchau, O.A., Epple, A., Bottasso, C.L.: Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations. J. Comput. Nonlinear Dyn. 4(2), 0210071 (2009)

    Google Scholar 

  40. Bauchau, O.A., Nikishkov, Y.G.: An implicit transition matrix approach to stability analysis of flexible multibody systems. Multibody Syst. Dyn. 5, 279–301 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Coleman, R.P.: Theory of self-excited mechanical oscillations of hinged rotor blades. NACA Report WR-L-308, Langley Research Center (1943)

  42. Skjoldan, P.F., Hansen, M.H.: On the similarity of the Coleman and Lyapunov–Floquet transformations for modal analysis of bladed rotor structures. J. Sound Vib. 327, 424–439 (2009)

    Google Scholar 

  43. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  44. Huynh, H.T.: Collocation and Galerkin time-stepping methods. In: 19th AIAA Computational Fluid Dynamics. (2009). American Institute of Aeronautics and Astronautics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier A. Bauchau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Discrete Fourier transforms

Let \(n_{T} > 1\), \(n_{H} = \left \lceil (n_{T} - 1)/2 \right \rceil \), and \(\tau _{k} = 2 k \pi /n_{T} \), \(k = 0,1,\ldots ,n_{T}-1\), where notation \(\left \lceil \cdot \right \rceil \) indicates the least integer greater than or equal to \((\cdot )\). The operator for the discrete Fourier transform and its inverse, both of size \(n_{T}\times n_{T}\), are defined as

$$ \begin{aligned} {{F}}_{0,n_{T}} &= \frac{2}{n_{T}} \begin{bmatrix} 1/2 & 1/2 & \cdots & 1/2 \\ \cos \tau _{0} & \cos \tau _{1} & \cdots & \cos \tau _{n_{T} - 1} \\ \sin \tau _{0} & \sin \tau _{1} & \cdots & \sin \tau _{n_{T} - 1} \\ \vdots & \vdots & \ddots & \vdots \\ \cos (n_{H} \tau _{0}) & \cos (n_{H} \tau _{1}) & \cdots & \cos (n_{H} \tau _{n_{T} - 1}) \\ \sin (n_{H} \tau _{0}) & \sin (n_{H} \tau _{1}) & \cdots & \sin (n_{H} \tau _{n_{T} - 1}) \end{bmatrix} , \\ {{F}}_{0,n_{T}}^{-1} &= \begin{bmatrix} 1 & \cos \tau _{0} & \sin \tau _{0} & \cdots & \cos (n_{H} \tau _{0}) & \sin (n_{H}\tau _{0}) \\ 1 & \cos \tau _{1} & \sin \tau _{1} & \cdots & \cos (n_{H} \tau _{1}) & \sin (n_{H} \tau _{1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \cos \tau _{n_{T} - 1} & \sin \tau _{n_{T} - 1} & \cdots & \cos (n_{H} \tau _{n_{T} - 1}) & \sin (n_{H} \tau _{n_{T} - 1}) \end{bmatrix} , \end{aligned} $$
(57)

for odd values of \(n_{T}\), and

$$ \begin{aligned} {{F}}_{0,n_{T}} &= \frac{2}{n_{T}} \begin{bmatrix} 1/2 & 1/2 & \cdots & 1/2 \\ \cos \tau _{0} & \cos \tau _{1} & \cdots & \cos \tau _{n_{T} - 1} \\ \sin \tau _{0} & \sin \tau _{1} & \cdots & \sin \tau _{n_{T} - 1} \\ \vdots & \vdots & \ddots & \vdots \\ \cos (n_{H} \tau _{0})/2 & \cos (n_{H} \tau _{1})/2 & \cdots & \cos (n_{H} \tau _{n_{T} - 1})/2\end{bmatrix} , \\ {{F}}_{0,n_{T}}^{-1} &= \begin{bmatrix} 1 & \cos \tau _{0} & \sin \tau _{0} & \cdots & \cos (n_{H} \tau _{0}) \\ 1 & \cos \tau _{1} & \sin \tau _{1} & \cdots & \cos (n_{H} \tau _{1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \cos \tau _{n_{T} - 1} & \sin \tau _{n_{T} - 1} & \cdots & \cos (n_{H} \tau _{n_{T} - 1})\end{bmatrix} , \end{aligned} $$
(58)

for even values of \(n_{T}\). These discrete operators are found by approximating the continuous Fourier transform and its inverse through a trapezoidal quadrature rule [43].

Appendix B: Radau polynomials

Legendre’s polynomials of degree \(k\), denoted as \(P_{k}(\xi )\), \(\xi \in [-1, 1]\), are orthogonal polynomials generated by the following recurrence relationship:

$$ (k+1) P_{k + 1}(\xi ) = (2k + 1) \xi P_{k - 1}(\xi ) - k P_{k - 2} ( \xi ),\quad k \ge 2. $$
(59)

The few lowest-order polynomials are \(P_{0} (\xi ) = 1\), \(P_{1} (\xi ) = \xi \), \(P_{2} (\xi ) = (3 \xi ^{2} - 1) / 2\), \(P_{3} (\xi ) = (5 \xi ^{3} - 3 \xi ) / 2\). The set of polynomials of degree less or equal to \(N\) forms a vector space of dimension \(N + 1\), denoted as \({\mathbf{P}}_{N}\). Clearly, the set of Legendre’s polynomials up to the \(N\)th degree, \(\{P_{0}, \ldots , P_{N}\}\), forms an orthogonal basis of \({\mathbf{{P}}}_{N}\).

The left and right Radau polynomials [44] of degree \(k\) are defined as

$$\begin{aligned} \bar{\ell }_{k}&= \displaystyle \frac{1}{2} (P_{k} + P_{k-1}), \end{aligned}$$
(60a)
$$\begin{aligned} \bar{r}_{k} &= \displaystyle \frac{(-1)^{k}}{2} (P_{k} - P_{k-1}). \end{aligned}$$
(60b)

The left and right Radau points are zeros of polynomials \(\bar{\ell }_{k}\) and \(\bar{r}_{k}\), respectively. Clearly, the right Radau polynomial \(\bar{l}_{k}\) is orthogonal to any polynomial \(p\in {\mathbf{{P}}}_{k-2}\). It is verified easily that

$$\begin{aligned} &\bar{\ell }_{k}(-1) = 0, \qquad \bar{\ell }_{k}(1) = 1, \end{aligned}$$
(61)
$$\begin{aligned} &\bar{r}_{k}(-1) = 1, \qquad \bar{r}_{k}(1) = 0. \end{aligned}$$
(62)

Considering a polynomial \(p \in {\mathbf{{P}}}_{k-1}\), integration by parts leads to

$$\begin{aligned} \int _{-1}^{1} p \bar{\ell }_{k}^{\,\prime } \, \mathrm{d}t &= \left . p \bar{\ell }_{k} \right \vert _{-1}^{1} - \int _{-1}^{1} p' \bar{\ell }_{k} \, \mathrm{d}t = p(1), \end{aligned}$$
(63a)
$$\begin{aligned} \int _{-1}^{1} p \bar{r}_{k}^{\,\prime } \, \mathrm{d}t &= \left . p \bar{r}_{k} \right \vert _{-1}^{1} - \int _{-1}^{1} p' \bar{r}_{k} \, \mathrm{d}t = - p(-1), \end{aligned}$$
(63b)

because of identities (61) and \(p' \in {\mathbf{{P}}}_{k-2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Bauchau, O.A. Simulation and stability analysis of periodic flexible multibody systems. Multibody Syst Dyn 50, 381–413 (2020). https://doi.org/10.1007/s11044-020-09741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09741-1

Keywords

Navigation