Skip to main content
Log in

Design and exploration of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and its derivatives as energetic materials

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

According to the fact that 5-nitro-3-trinitromethyl-1H-1,2,4 triazole (NTNMT) is a successful, good explosive, energetic groups such as –CH3, –NH2, –NHNO2, –NO2, –ONO2, –NF2, –CN, –NC, –N3 groups were introduced into NTNMT and their oxygen balance was at about zero. The energetic properties, detonation performance, and sensitivity were studied at the B3LYP/6-31G** level of density functional theory to seek for possible high energy density compounds. The effects of substituent groups on heat of formation (HOF), density ρ, detonation velocity D, detonation pressure P, detonation energy Q, and sensitivity (evaluated using oxygen balance OB, the nitro group charges –QNO2, and bond dissociation energies BDE were studied and discussed. The order of contribution of the substituent groups to ρ, D, and P was –NF2 > –ONO2 > –NO2 > –NHNO2 > –N3 > –NH2 > –NC > –CN > –CH3; while to HOF is –N3 > –NC > –CN > –NO2 > –NF2 > –ONO2 > –NH2 > –NHNO2 > –CH3. The trigger bonds in the pyrolysis process for NTNMT derivatives may be N–NO2, N–NH2, N–NHNO2, C–NO2, or O–NO2 varying with the attachment of different substituents. Results show that NTNMT–NHNO2, –NH2, –CN, and –NC derivatives have high detonation performance and good stability. In a word, the oxygen balance at about zero strategy in this work offers new routes for the improvement in properties and stabilities of energetic materials.

Graphic abstract

In the present paper, several 5-nitro-3-trinitromethyl-1H-1,2,4 triazole (NTNMT) derivatives were designed. Their energetic properties, detonation performance, and sensitivity were studied at the B3LYP/6-31G** level of density functional theory (DFT) to seek for possible high energy density compounds (HEDCs). The different substituents have some changes in the influence on heat of formation (HOF), density ρ, detonation velocity D, detonation pressure P, detonation energy Q, and sensitivity. In a word, the oxygen balance at about zero strategy in this work offers new routes for the improvement in properties and stabilities of energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sikder A, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15. https://doi.org/10.1016/j.jhazmat.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  2. Badgujar D, Talawar M, Asthana S, Mahulikar P (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305. https://doi.org/10.1016/j.jhazmat.2007.10.039

    Article  CAS  PubMed  Google Scholar 

  3. Joo Y, Shreeve JM (2010) Nitroimino-tetrazolates and oxy-nitroimino-tetrazolates. J Am Chem Soc 132:15081–15090. https://doi.org/10.1021/ja107729c

    Article  CAS  PubMed  Google Scholar 

  4. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54:11525–11536. https://doi.org/10.1016/S0040-4020(98)00673-5

    Article  CAS  Google Scholar 

  5. Puchala A, Belaj F, Bergman J, Kappe CO (2001) On the reaction of 3, 4-dihydropyrimidones with nitric acid. Preparation and X-ray structure analysis of a stable nitrolic acid. J Heterocycl Chem 38:1345–1352. https://doi.org/10.1002/jhet.5570380616

    Article  CAS  Google Scholar 

  6. Zeng Z, Gao H, Twamley B, Shreeve JM (2007) Energetic mono and dibasic 5-dinitromethyltetrazolates: synthesis, properties, and particle processing. J Mater Chem 17:3819–3826. https://doi.org/10.1039/b708041g

    Article  CAS  Google Scholar 

  7. Katritzky AR, Sommen GL, Gromova AV et al (2005) Synthetic routes towards tetrazolium and triazolium dinitromethylides. Chem Heterocycl Compd 41:111–118. https://doi.org/10.1007/s10593-005-0116-5

    Article  CAS  Google Scholar 

  8. Göbel M, Klapötke TM (2009) Development and testing of energetic materials: the concept of high densities based on the trinitroethyl functionality. Adv Funct Mater 19:347–365. https://doi.org/10.1007/s10593-005-0116-5

    Article  Google Scholar 

  9. Minier L, Behrens R, Bulusu S (1996) Mass spectra of 2,4-dinitroimidazole and its isotopomers using simultaneous thermogravimetric modulated beam mass spectrometry. J Mass Spectrom 31:25–30. https://doi.org/10.1002/(sici)1096-9888(199601)31:1%3c25:aid-jms252%3e3.0.co;2-c

    Article  CAS  Google Scholar 

  10. Bracuti A (1995) Crystal structure of 2,4-dinitroimidazole (24DNI). J Chem Crystallogr 25:625–627. https://doi.org/10.1007/BF01665967

    Article  CAS  Google Scholar 

  11. Agrawal JP, Hodgson RD (2007) Organic chemistry of explosives. Wiley, West Sussex

    Google Scholar 

  12. Bulusu S, Damavarapu R, Autera J, Behrens R Jr, Minier L, Villanueva J, Jayasuriya K, Axenrod T (1995) Thermal rearrangement of 1,4-dinitroimidazole to 2,4-dinitroimidazole: characterization and investigation of the mechanism by mass spectrometry and isotope labeling. J Phys Chem 99:5009–5015. https://doi.org/10.1021/j100014a022

    Article  CAS  Google Scholar 

  13. Cho JR, Kim KJ, Cho SG, Kim JK (2002) Synthesis and characterization of 1-methyl-2,4,5-trinitroimidazole (MTNI). J Heterocycl Chem 39:141–148. https://doi.org/10.1002/chin.200231134

    Article  CAS  Google Scholar 

  14. Cho SG, Park BS, Cho JR (1999) Theoretical studies on the structure of 1,2,4,5-tetranitroimidazole. Propell Explos Pyrot 24:343–348. https://doi.org/10.1002/(SICI)1521-4087(199912)24:63.0.CO;2-P

    Article  CAS  Google Scholar 

  15. Thottempudi V, Gao H, Shreeve JM (2011) Trinitromethyl-substituted 5-nitro-or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc 133:6464–6471. https://doi.org/10.1021/ja2013455

    Article  CAS  PubMed  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision A.1. Gaussian, Inc., Pittsburgh

    Google Scholar 

  17. Zijun Y, Elliot RB (2013) Sensitivity and performance of azole based energetic materials. J Phys Chem A 117(42):10889–10902. https://doi.org/10.1021/jp4054007

    Article  CAS  Google Scholar 

  18. Liu Y, Gong XD, Wang LJ, Wang GX, Xiao HM (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2′,4,4′,6,6′-hexanitroazobenzene derivatives. J Phys Chem A 115:1754–1762. https://doi.org/10.1021/jp200512j

    Article  CAS  PubMed  Google Scholar 

  19. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114:498–503. https://doi.org/10.1021/jp9071839

    Article  CAS  PubMed  Google Scholar 

  20. Meng T, Chi WJ, Li QS, Li ZS (2016) Theoretical design of highly energetic poly-nitro cage compounds. RSC Adv 6(53):47607–47615. https://doi.org/10.1039/C6RA05352A

    Article  CAS  Google Scholar 

  21. Zhang JY, Gong XD (2015) Computer simulations and analysis of structural and energetic features of crystalline cage energetic compound: 2,4,6,8,12-pentanitro-10-(3,5,6-trinitro (2-pyridyl))-2,4,6,8,12-hexaazatetracyclo [5.5.0.03,11.05,9] dodecane. J Phys Org Chem 28(9):577–585. https://doi.org/10.1021/jp970128b

    Article  CAS  Google Scholar 

  22. Zhang JY, Wang F, Gong XD (2012) A DFT study of cage compounds: 3,5,8,10,11,12-hexanitro-3,5,8,10,11,12-hexaazatetracyclo [5.5.1.12,6.04,9] dodecane and its derivatives as high energetic materials. Struct Chem 24(4):1339–1346. https://doi.org/10.1021/jp970128b

    Article  Google Scholar 

  23. Zhong YP, Hu YD, Jiang HZ (1991) Performance manual of overseas explosives. Weapon Industry Press, Beijing

    Google Scholar 

  24. Lide DR (2004) Handbook of chemistry and physics, 84th edn. CRC, Boca Raton

    Google Scholar 

  25. Curtiss LA, Raghavachari K, Redfern PC et al (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079. https://doi.org/10.1063/1.473182

    Article  CAS  Google Scholar 

  26. Ochterski JW, Petersson GA, Montgomery JA (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104:2598–2619. https://doi.org/10.1063/1.470985

    Article  CAS  Google Scholar 

  27. Jursic B (2000) Computing the heat of formation for cubane and tetrahedrane with density functional theory and complete basis set ab initio methods. J Mol Struct (Theochem) 499:137–140. https://doi.org/10.1016/s0166-1280(99)00293-6

    Article  CAS  Google Scholar 

  28. Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J Phys Chem A 113:9404–9412. https://doi.org/10.1021/jp902295v

    Article  CAS  PubMed  Google Scholar 

  29. Zhang JY, Gong XD (2015) Comparative theoretical investigation of the structures, energetics, and stabilities of C7N5H11cages. J Mol Model 21:1–8. https://doi.org/10.1007/s00894-015-2632-2

    Article  CAS  Google Scholar 

  30. Wu Q, Xiong GL, Liu ZC, Xiang D, Yang CH, Zhu WH, Xiao HM (2014) Improving an insensitive low-energy compound 1,3,4,6,7,9-hexaazacycl [3.3.3] azine to be an insensitive high explosive by a way of two-step structural modifications. Can J Chem 92:1157–1161. https://doi.org/10.1139/cjc-2014-0396

    Article  CAS  Google Scholar 

  31. Liu H, Wang F, Wang GX, Gong XD (2012) Theoretical investigations on the crystal structure, density, detonation properties, and sensitivity of the derivatives of PYX. J Comput Chem 33:1790–1796. https://doi.org/10.1002/jcc.23006

    Article  CAS  PubMed  Google Scholar 

  32. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. Simple method for calculating detonation properties of C–H–O–N explosives. J Chem Phys 48:23–35. https://doi.org/10.1063/1.1667908

    Article  CAS  Google Scholar 

  33. Zhen SM, Quan CS, Meng JZ, Jia QY (1981) Theory of explosives. Weapons Industry Press, Beijing

    Google Scholar 

  34. Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2011) DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J Phys Chem A 48:23–35. https://doi.org/10.1021/jp1118822

    Article  CAS  Google Scholar 

  35. Xu XJ, Xiao HM, Gong XD et al (2005) Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J Phys Chem A 109:11268–11274. https://doi.org/10.1021/jp040472q

    Article  CAS  PubMed  Google Scholar 

  36. Zhang XL, Yang JQ, Lu M, Gong XD (2014) Theoretical studies on the stability of phenylpentazole and its substituted derivatives of –OH, –OCH3, –OC2H5 and –N(CH3)2. RSC Adv 4:56095–56101. https://doi.org/10.1039/C4RA10669E

    Article  CAS  Google Scholar 

  37. Wang F, Wang GX, Du HC, Zhang JY, Gong XD (2011) Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines. J Phys Chem A 115:13858–13864. https://doi.org/10.1021/jp2047536

    Article  CAS  PubMed  Google Scholar 

  38. Wang F, Du HC, Zhang JY, Gong XD (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J Phys Chem A 115:11788–11795. https://doi.org/10.1021/jp2049469

    Article  CAS  PubMed  Google Scholar 

  39. Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quantum Chem 105:341–347. https://doi.org/10.1002/qua.20709

    Article  CAS  Google Scholar 

  40. Politzer P, Murray JS, Grice ME, Desalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91:923–928. https://doi.org/10.1080/002689797171030

    Article  CAS  Google Scholar 

  41. Schmidt MW, Gordon MS, Boatz JA (2005) Triazolium-based energetic ionic liquids. J Phys Chem A 109:7285–7295. https://doi.org/10.1021/jp058149q

    Article  CAS  PubMed  Google Scholar 

  42. Zhang XL, Gong XD (2015) Theoretical study of the stabilities and detonation performance of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and its derivatives. J Mol Model 21(2):26. https://doi.org/10.1007/s00894-015-2581-9

    Article  CAS  PubMed  Google Scholar 

  43. Akst IB (1989) Proceedings, ninth symposium (international) on detonation, Portland, OR; Office of the Chief of Naval Research report OCNR 113291-7, I, 478

  44. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Subhananda RA (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161:589–607. https://doi.org/10.1016/j.jhazmat.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  45. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell Explos Pyrotech 22:249–255. https://doi.org/10.1002/prep.19970220502

    Article  CAS  Google Scholar 

  46. Peter P, Jane SM (2016) High performance, low sensitivity,: conflicting or compatible? Propell Explos Pyrotech 41:414–425. https://doi.org/10.1002/prep.201500349

    Article  CAS  Google Scholar 

  47. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1002/prep.201500349

    Article  CAS  Google Scholar 

  48. Tarver CM, Chidester AL, Nichols III (1996) Critical conditions for impact- and shock-induced hot spots in solid explosives. J Phys Chem 100:5794–5799. https://doi.org/10.1021/jp953123s

    Article  CAS  Google Scholar 

  49. Gonzalez AC, Lamon CW, McMillen DF, Golden DM (1985) Mechanism of decomposition of nitroaromatics. laser-powered homogeneous pyrolysis of substituted nitrobenzenes. J Phys Chem 89:4809–4814. https://doi.org/10.1021/j100268a030

    Article  CAS  Google Scholar 

  50. Owens FJ, Jayasuriya K, Abrahmsen L, Politzer P (1985) Computational analysis of some properties associated with the nitro groups in polynitroaromatic molecules. Chem Phys Lett 116:434–438. https://doi.org/10.1016/0009-2614(85)80199-8

    Article  CAS  Google Scholar 

  51. Xiao HM, Fan JF, Gu ZM, Dong HS (1996) Theoretical study on pyrolysis and sensitivity of energetic compounds: (3) nitro derivatives of aminobenzenes. Chem Phys 226:15–24. https://doi.org/10.1016/s0301-0104(97)00288-7

    Article  Google Scholar 

  52. Murray JS, Politzer P (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht

    Google Scholar 

  53. Michels HH, Montgomery JA (1993) On the structure and thermochemistry of hydrogen dinitramide. J Phys Chem 97:6602–6606. https://doi.org/10.1021/j100127a008

    Article  CAS  Google Scholar 

  54. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574. https://doi.org/10.1007/s00894-010-0953-8

    Article  CAS  PubMed  Google Scholar 

  55. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107:89–97. https://doi.org/10.1080/00268970902744375

    Article  CAS  Google Scholar 

  56. Li JS, Huang YG, Dong HS (2005) A theoretical study of polynitropyridines and their N-oxides. J Energ Mater 23:133–149. https://doi.org/10.1080/07370650591001826

    Article  CAS  Google Scholar 

  57. Zeman S (2007) Sensitivities of high energy compounds. Struct Bonding (Berlin) 125:195–271. https://doi.org/10.1007/430_2006_052

    Article  CAS  Google Scholar 

  58. Storm CB, Stine JR, Kramer JF (1990) Sensitivity relationships in energetic materials. In: Bulusu SN (ed) Chemistry and physics of energetic materials, ch 27. Kluwer, Dordrecht, pp 605–639

    Chapter  Google Scholar 

  59. Murray J, Politzer P (1990) Chemistry and physics of energetic materials. Kluwer Academic Publishers, Dordrecht, pp 157–173

    Book  Google Scholar 

  60. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982. https://doi.org/10.1021/jp0512309

    Article  CAS  PubMed  Google Scholar 

  61. Murray JS, Lane PP, Bolduc PR (1990) A relationship between impact sensitivity and the electrostatic potentials at the midpoints of C–NO2 bonds in nitroaromatics. Chem Phys Lett 168:135–139. https://doi.org/10.1016/0009-2614(90)85118-v

    Article  CAS  Google Scholar 

  62. Zhang JY, Chen GL, Gong XD (2017) QSPR modeling of detonation parameters and sensitivity of some energetic materials: DFT vs. PM3 calculations. J Mol Model 23:193. https://doi.org/10.1007/s00894-017-3357-1

    Article  PubMed  Google Scholar 

  63. David SA, Revathi M, Asthana SN, Pawar RB, Kumaradhas P (2011) Probing the weakest bond and the cleavage of p-chlorobenzaldehyde diperoxide energetic molecule via quantum chemical calculations and theoretical charge density analysis. Int J Quant Chem 111:3741–3754. https://doi.org/10.1002/qua.22879

    Article  CAS  Google Scholar 

  64. David SA, Pawar RB, Kumaradhas P (2010) Exploring the bond topological properties and the charge depletion-impact sensitivity relationship of high energetic TNT molecule via theoretical charge density analysis. J Mol Struct 959(1–3):55–61. https://doi.org/10.1016/j.theochem.2010.08.005

    Article  CAS  Google Scholar 

  65. Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2012) Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3, 4-tetraazol-5-yl)) methyl-2,4,6,8,12-hexanitrohexaazaisowurtzitane. J Mol Model 18:165–170. https://doi.org/10.1007/s00894-011-1053-0

    Article  CAS  PubMed  Google Scholar 

  66. Wilson WS, Bliss DE, Christian SL, Knight DJ (1990) Naval Weapons Center Technical Report NWC TP 7073

Download references

Acknowledgements

This project is supported by the Cultivating Project of Chuzhou University (2017PY02), Natural Science Foundation of Anhui Province (1808085MB50) and Support Program for Excellent Young Talents in Colleges and Universities of Anhui Province (gxyq2019095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ying Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jy., Chen, Gl., Jie dong et al. Design and exploration of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and its derivatives as energetic materials. Mol Divers 25, 2107–2121 (2021). https://doi.org/10.1007/s11030-020-10103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10103-4

Keywords

Navigation