Skip to main content
Log in

Conditional maximum Lq-likelihood estimation for regression model with autoregressive error terms

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this article, we consider the parameter estimation of regression model with pth-order autoregressive (AR(p)) error term. We use the maximum Lq-likelihood (MLq) estimation method proposed by Ferrari and Yang (Ann Stat 38(2):753–783, 2010), as a robust alternative to the classical maximum likelihood (ML) estimation method to handle the outliers in the data. After exploring the MLq estimators for the parameters of interest, we provide some asymptotic properties of the resulting MLq estimators. We give a simulation study and three real data examples to illustrate the performance of the proposed estimators over the ML estimators and observe that the MLq estimators have superiority over the ML estimators when some outliers are present in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alpuim T, El-Shaarawi A (2008) On the efficiency of regression analysis with AR(p) errors. J Appl Stat 35(7):717–737

    Article  MathSciNet  Google Scholar 

  • Ansley CF (1979) An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika 66(1):59–65

    Article  MathSciNet  Google Scholar 

  • Beach CM, Mackinnon JG (1978) A maximum likelihood procedure for regression with autocorrelated errors. Econom J Econom Soc 46(1):51–58

    MathSciNet  MATH  Google Scholar 

  • Cavalieri J (2002) O método de máxima Lq-verossimilhança em modelos com erros de medição. Doctoral thesis, Federal University of São Carlos, Department of Statistics. Retrieved from https://repositorio.ufscar.br/bitstream/handle/ufscar/4554/4180.pdf?sequence=1

  • Cochrane D, Orcutt GH (1949) Application of least square to relationship containing autocorrelated error terms. J Am Stat Assoc 44(245):32–61

    MATH  Google Scholar 

  • Dogru FZ, Bulut YM, Arslan O (2018) Doubly reweighted estimators for the parameters of the multivariate t-distribution. Commun Stat Theory Methods 47(19):4751–4771

    Article  MathSciNet  Google Scholar 

  • Ferrari D, Paterlini S (2009) The maximum Lq-likelihood method: an application to extreme quantile estimation in finance. Methodol Comput Appl Probab 11(1):3–19

    Article  MathSciNet  Google Scholar 

  • Ferrari D, Paterlini S (2010) Efficient and robust estimation for financial returns: an approach based on q-entropy. Available at SSRN: http://ssrn.com/abstract=1906819 or http://dx.doi.org/10.2139/ssrn.1906819

  • Ferrari D, Yang Y (2007) Estimation of tail probability via the maximum Lq-likelihood method. Technical report 659, School of statistics, University of Minnesota

  • Ferrari D, Yang Y (2010) Maximum Lq-likelihood estimation. Ann Stat 38(2):753–783

    Article  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics. The approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Havrda J, Charvát F (1967) Quantification method of classification processes: concept of structural entropy. Kibernetika 3:30–35

    MATH  Google Scholar 

  • Huang C, Lin J, Ren YY (2013) Testing for the shape parameter of generalized extreme value distribution based on the Lq-likelihood ratio statistic. Metrika 76(5):641–671

    Article  MathSciNet  Google Scholar 

  • Huber PJ, Ronchetti EM (2009) Robust statistics. Wiley, New Jersey

    Book  Google Scholar 

  • Maronna RA, Martin RD, Yohai VJ (2006) Robust statistics: theory and methods. Wiley, Chichester

    Book  Google Scholar 

  • Ozdemir S, Güney Y, Tuaç Y, Arslan O (2019) Maximum Lq-likelihood estimation for the parameters of Marshall-Olkin extended burr XII distribution. Commun Fac Sci Univ Ank Ser A1 Math Stat 68(1):17–34

    MathSciNet  Google Scholar 

  • Qin Y, Priebe EC (2013) Maximum Lq-likelihood estimation via the expectation maximization algorithm: a robust estimation of mixture models. J Am Stat Assoc 108(503):914–928

    Article  Google Scholar 

  • Qin Y, Priebe EC (2017) Robust hypothesis testing via Lq-likelihood. Stat Sin 27:1793–1813

    MATH  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Ronchetti E (1985) Robust model selection in regression. Stat Prob Lett 3:21–23

    Article  MathSciNet  Google Scholar 

  • Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley Series. Wiley, New York

    Book  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52:479–487

    Article  MathSciNet  Google Scholar 

  • Tuaç Y, Güney Y, Senoglu B, Arslan O (2018) Robust parameter estimation of regression model with AR(p) error terms. Commun Stat Simul Comput 47(8):2343–2359

    Article  MathSciNet  Google Scholar 

  • Tuaç Y, Güney Y, Arslan O (2020) Parameter estimation of regression model with AR (p) error terms based on skew distributions with EM algorithm. Soft Comput 24(5):3309–3330

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their careful reading and suggestions of this paper. Their comments and suggestions remarkably improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeşim Güney.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Let \( \underline{\theta } = \left( { \beta_{1} , \beta_{2} , \ldots ,\beta_{M} ,\;\phi_{1} ,\phi_{2} , \ldots ,\phi_{p} ,\sigma^{2} } \right). \) The elements of \( U\left( {a_{t} ;\underline{\theta } } \right) \) are

$$ \begin{aligned} \frac{\partial lnf}{{\partial \beta_{k} }} & = \frac{1}{{\sigma^{2} }}\left( {\Phi \left( B \right)y_{t} - \mathop \sum \limits_{i = 1}^{M} \beta_{i}\Phi \left( B \right)x_{t,i} } \right)\Phi \left( B \right)x_{t,k} ,\quad k = 1,2, \ldots ,M \\ \frac{\partial lnf}{{\partial \phi_{r} }} & = \frac{1}{{\sigma^{2} }}\left( {\Phi \left( B \right)y_{t} - \mathop \sum \limits_{i = 1}^{M} \beta_{i}\Phi \left( B \right)x_{t,i} } \right)\left( {y_{t - r} - \mathop \sum \limits_{i = 1}^{M} \beta_{i} x_{t - r,i} } \right) ,\quad r = 1,2, \ldots ,p, \\ \frac{\partial lnf}{{\partial \sigma^{2} }} & = - \frac{1}{{2\sigma^{2} }} + \frac{1}{{2\sigma^{4} }}\left( {\Phi \left( B \right)y_{t} - \mathop \sum \limits_{i = 1}^{M} \beta_{i}\Phi \left( B \right)x_{t,i} } \right)^{2} , \\ \end{aligned} $$

where \( t = p + 1, \ldots ,N. \)

The second partial derivatives are

$$ \begin{aligned} \frac{{\partial^{2} \ln f}}{{\partial \beta_{j} \partial \beta_{k} }} & = - \frac{1}{{\sigma^{2} }}\Phi \left( B \right)x_{t,j}\Phi \left( B \right)x_{t,k} , \frac{{\partial^{2} \ln f}}{{\partial \beta_{j} \partial \phi_{r} }} = - \frac{1}{{\sigma^{2} }}\left[ {e_{t - r}\Phi \left( B \right)x_{t,j} + a_{t} x_{t - r,j} } \right], \\ \frac{{\partial^{2} \ln f}}{{\partial \beta_{j} \partial \sigma^{2} }} & = - \frac{1}{{\sigma^{4} }}a_{t}\Phi \left( B \right)x_{t,j} , \frac{{\partial^{2} \ln f}}{{\partial \phi_{r} \partial \phi_{s} }} = - \frac{1}{{\sigma^{2} }}e_{t - r} e_{t - s} , \\ \frac{{\partial^{2} \ln f}}{{\partial \phi_{r} \partial \sigma^{2} }} & = - \frac{2}{{\sigma^{4} }}a_{t} e_{t - r} , \frac{{\partial^{2} \ln f}}{{\partial \left( {\sigma^{2} } \right)^{2} }} = \frac{1}{{2\sigma^{4} }} - \frac{1}{{\sigma^{6} }}a_{t}^{2} , \\ \end{aligned} $$

where \( t = p + 1, \ldots ,N, j,k = 1,2, \ldots ,M \) and \( r,s = 1,2, \ldots ,p. \)

Appendix B

The elements of \( U^{*} \left( {a_{t} ;\underline{\theta } ,q} \right) \) are

$$ \begin{aligned} \frac{\partial Lq}{{\partial \beta_{k} }} & = \frac{1}{{\sigma^{2} }}\omega_{t} \left( {\Phi \left( B \right)y_{t} - \mathop \sum \limits_{i = 1}^{M} \beta_{i}\Phi \left( B \right)x_{t,i} } \right)\Phi \left( B \right)x_{t,k} , \quad k = 1,2, \ldots ,M \\ \frac{\partial Lq}{{\partial \phi_{r} }} & = \frac{1}{{\sigma^{2} }}\omega_{t} \left( {\Phi \left( B \right)y_{t} - \mathop \sum \limits_{i = 1}^{M} \beta_{i}\Phi \left( B \right)x_{t,i} } \right)\left( {y_{t - r} - \mathop \sum \limits_{i = 1}^{M} \beta_{i} x_{t - r,i} } \right),\quad r = 1,2, \ldots ,p, \\ \frac{\partial Lq}{{\partial \sigma^{2} }} & = \omega_{t} \left[ { - \frac{1}{{2\sigma^{2} }} + \frac{1}{{2\sigma^{4} }}\left( {\Phi \left( B \right)y_{t} - \mathop \sum \limits_{i = 1}^{M} \beta_{i}\Phi \left( B \right)x_{t,i} } \right)^{2} } \right], \\ \end{aligned} $$

where

$$ \omega_{t} = \left( {\frac{1}{{\sqrt {2\pi \sigma^{2} } }}exp\left\{ { - \frac{{\left( {\Phi \left( B \right)y_{t} - \mathop \sum \nolimits_{i = 1}^{M} \beta_{i}\Phi \left( B \right)x_{t,i} } \right)^{2} }}{{2\sigma^{2} }}} \right\} } \right)^{1 - q} , \quad t = p + 1, \ldots N. $$

The second partial derivatives of conditional Lq-likelihood function can be obtained by substituting the derivatives given in “Appendix A” in Eq. (25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güney, Y., Tuaç, Y., Özdemir, Ş. et al. Conditional maximum Lq-likelihood estimation for regression model with autoregressive error terms. Metrika 84, 47–74 (2021). https://doi.org/10.1007/s00184-020-00774-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00774-2

Keywords

Navigation