Skip to main content
Log in

Exploration of Trade-Off Between Elastic Modulus and Strength of Mg–Gd–Y–Nd–Zr Alloy by Regulating Intermetallic Phases Through Si Addition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, low-cost Si was added to an Mg–8Gd–4Y–1Nd–0.5Zr alloy to regulate the intermetallic phases. The mechanical properties of 0, 0.5, and 1.0 wt% Si-added alloys were studied to explore the trade-off between the elastic modulus and strength. The microstructures were characterized through metallographic microscopy, scanning electron microscopy applying energy dispersive spectroscopy, and transmission electron microscopy. The microstructures demonstrated that Y5Si3 and GdSi phases formed and consumed the solid soluble Gd and Y elements, thus reducing the amount of precipitation and increasing the size of the β′ phase. Correlations between the elastic modulus and the intermetallic phase indicated that the Y5Si3 and GdSi phases formed by the addition of Si were the mainly responsible for the improvement in the elastic modulus. The change in strength through the addition of Si was calculated, and the results revealed that such an addition could increase the elastic modulus but with a reduction in the alloy strength. The addition of 0.5 wt% Si alloy resulted in a relatively high comprehensive performance, with an elastic modulus of 46 GPa, a tensile strength of 278 MPa, a yield strength of 226 MPa, and an elongation of 4.9% under a cast-T6 state.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. B.L. Mordike, T. Ebert, Mater. Sci. Eng., A 37, 302 (2001)

    Google Scholar 

  2. N. Liu, Z. Zhang, L. Peng, W. Ding, Mater. Sci. Eng., A 223, 627 (2015)

    Google Scholar 

  3. Y. Wan, S. Xu, C. Liu, Y. Gao, S. Jiang, Mater. Letters 274, 213 (2018)

    Google Scholar 

  4. C. Tang, X. Wang, W. Liu, D. Feng, K. Wu, Mater. Sci. Eng., A 172, 759 (2019)

    Google Scholar 

  5. X. Zhou, C. Liu, Y. Gao, S. Jiang, Z. Chen, J. Alloy. Compd. 878, 749 (2018)

    Google Scholar 

  6. H. Shi, Y. Deng, K. Zhang, L. Yang, A. Chen, Chinese J. Nonferrous Metals 1785, 27 (2017)

    Google Scholar 

  7. L. Jiang, W. Liu, G. Wu, W. Ding, Mater. Sci. Eng., A 293, 612 (2014)

    Google Scholar 

  8. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Frideman, D.L. Chen, Int. J. Fatigue 383, 70 (2015)

    Google Scholar 

  9. R. Zeng, W.G. Dietzel, F. Witte, N. Hort, C. Blawert, Adv. Eng. Mater. 3, 10 (2008)

    Google Scholar 

  10. A. Villuendas, J. Jorba, A. Roca, Metall. Mater. Trans. A 3857, 45 (2014)

    Google Scholar 

  11. Y. Zhang, W. Rong, Y.J. Wu, L.M. Peng, J.F. Nie, N. Birbilis, J. Alloy. Compd. 531, 777 (2018)

    Google Scholar 

  12. M.J. Shen, X.J. Wang, C.D. Li, M.F. Zhang, X.S. Hu, M.Y. Zheng, K. Wu, Mater. Design 1011, 52 (2013)

    Google Scholar 

  13. P. Poddar, V.C. Srivastava, P.K. De, K.L. Sahoo, Mater. Sci. Eng., A 357, 460 (2007)

    Article  Google Scholar 

  14. S. Zhou, K. Deng, J. Li, S. Shang, W. Liang, J. Fan, Mater. Design 672, 63 (2014)

    Google Scholar 

  15. X. Wang, X. Hu, K. Nie, K. Wu, M. Zheng, Trans. Nonferrous Met. Soc. 1912, 22 (2012)

    Google Scholar 

  16. Ç. Çelik, S. Güneş, N. Sarıkaya, P. Karadayı, Y. Türe, A. Ataman, E. Arkın, Ç. Yalçın, G. Palumbo, D. Sorgente, D. Turan, A.A. Kaya, in 18th International Metallurgyand and Materials Congress UCTEA Chamber Metallurgical and Materials Engineering, Istanbul, vol. 612 (2016)

  17. A.A. Kaya, Ç. Çelik, Y. Türe, A. Ataman, E. Arkın, G. Palumbo, D. Sorgente, D. Turan, in International Metallurgical Technology (2017)

  18. X.M. Zhang, J.L. Hu, L.L. Ye, Y.L. Deng, C.P. Tang, L. Yang, Z.Y. Liu, Mater. Des. 74, 43 (2013)

    Google Scholar 

  19. J.L. Hu, X.M. Zhang, C.P. Tang, Y.L. Deng, Z.Y. Liu, L. Yang, Mater. Sci. Eng., A 19, 571 (2013)

    Google Scholar 

  20. D. Zhao, X. Chen, J. Ye, T. Chen, Y. Dai, J. Alloys Comp. 1, 810 (2019)

    Google Scholar 

  21. C.P. Tang, W.H. Liu, Y.Q. Chen, Mater. Sci. Eng., A 63, 659 (2016)

    Google Scholar 

  22. D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn (Taylor & Francis, 1992)

  23. J.K. Zheng, R. Luo, X. Zeng, B. Chen, Mater. Des. 137, 316 (2018)

    Article  CAS  Google Scholar 

  24. L. Guan, Y. Deng, H. Shi, L. Yang, M. Chen, J. Mater. Eng. Perform. 243, 27 (2017)

    Google Scholar 

  25. M. Mabuchi, K. Higashi, Acta ater. 4611, 44 (1996)

    Google Scholar 

  26. P. Li, J.Y. Hao, J. Zhao, Mater. Sci. Eng., A 7469, 527 (2010)

    Google Scholar 

  27. M.D. Segall, J.D. Lindan, M.J. Probert, J. Phys. Condens. Mat. 2717, 14 (2002)

    Google Scholar 

  28. D.C. Gupta, S.K. Singh, J. Alloys Compd. 26, 515 (2012)

    Google Scholar 

  29. YuV Knyazev, A.V. Lukoyanov, YuI Kuzmin, B. Maji, K. G. Suresh. J. Alloys Compd. 725, 588 (2014)

    Google Scholar 

  30. C.F. Yu, H.C. Cheng, W.H. Chen, J. Alloys Compd. 576, 619 (2015)

    Google Scholar 

  31. W.Y. Hu, M.C. Qian, Q.Q. Zheng, Physica C 1625, 282 (1997)

    Google Scholar 

  32. Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, M.X. Liang, Mater. Sci. Eng. A 274, 454 (2007)

    Google Scholar 

  33. R. W. Hertzberg, F. E. Hauser, Deformation and Fracture Mechanics of Engineering Materials, 5th edn, (Wiley, 2012)

  34. M.X. Guo, K. Shen, M.P. Wang, Acta Mater. 4568, 57 (2009)

    Google Scholar 

  35. E.A. Owen, L. Pickup, J.O. Roberts, J. Chem. Phys. 605, 3 (1935)

    Google Scholar 

  36. C. Wang, E.J. Lavernia, G. Wu, W. Liu, W. Ding, Metall. Mater. Trans. A 47A, 4104 (2016)

    Article  Google Scholar 

  37. J.H. Shen, Y.L. Li, Q. Wei, Mater. Sci. Eng., A 270, 582 (2013)

    Google Scholar 

  38. S. Sandlobes, M. Friak, J. Neugebauer, D. Raabe, Mater. Sci. Eng., A 61, 576 (2013)

    Google Scholar 

  39. V.A. Gorodtsov, D.S. Lisovenko, Mech. Mater. 1, 134 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Equipment Advance Study Project (Project No. 41422010705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, L., Deng, Y., Luo, Y. et al. Exploration of Trade-Off Between Elastic Modulus and Strength of Mg–Gd–Y–Nd–Zr Alloy by Regulating Intermetallic Phases Through Si Addition. Met. Mater. Int. 27, 3740–3749 (2021). https://doi.org/10.1007/s12540-020-00749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00749-y

Keywords

Navigation