Skip to main content
Log in

Synthesis of CoCrFeNiMnW0.25 High-Entropy Alloy Powders by Mechanical Alloying and Plasma Spheroidization Processes for Additive Manufacturing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Spherical powders of CoCrFeNiMnW0.25 high-entropy alloy were obtained from elemental powders by mechanical alloying (MA) at various energy modes followed by plasma spheroidization. Samples obtained from low-energy MA-powders have an inhomogeneous microstructure and phase composition. Samples obtained from MA-powders with homogeneous structures have a high degree of sphericity and chemical homogeneity; the face-centered cubic solid solution represents the phase composition of the powders. The resulting powders can be used in powder-based additive manufacturing technologies.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys—a new era of exploitation. Mater. Sci. Forum (2007). https://doi.org/10.4028/www.scientific.net/msf.560.1

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303+274 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  3. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb 25Mo 25Ta 25W 25 and V 20Nb 20Mo 20Ta 20W 20 refractory high entropy alloys. Intermetallics (2011). https://doi.org/10.1016/j.intermet.2011.01.004

    Article  Google Scholar 

  4. J.W. Yeh, S.K. Chen, H.C. Shih, Y. Zhang, T.T. Zuo, Functional properties. High-Entropy Alloys Fundam. Appl. (2016). https://doi.org/10.1007/978-3-319-27013-5_7

    Article  Google Scholar 

  5. S.A. Firstov, V.F. Gorban, N.A. Krapivka, M.V. Karpets, A.D. Kostenko, Wear resistance of high-entropy alloys. Powder Metall. Met. Ceram. (2017). https://doi.org/10.1007/s11106-017-9882-8

    Article  Google Scholar 

  6. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013). https://doi.org/10.1016/j.actamat.2013.06.018

    Article  CAS  Google Scholar 

  7. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  8. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. (2019). https://doi.org/10.1016/j.pmatsci.2018.12.003

    Article  Google Scholar 

  9. A. Gali, E.P. George, Intermetallics tensile properties of high- and medium-entropy alloys 39, 74–78 (2013)

    CAS  Google Scholar 

  10. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014). https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  11. D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys. Scr. Mater. 165, 39–43 (2019). https://doi.org/10.1016/j.scriptamat.2019.02.018

    Article  CAS  Google Scholar 

  12. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  13. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys. Intermetallics (2010). https://doi.org/10.1016/j.intermet.2010.05.014

    Article  Google Scholar 

  14. S. Guo, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  15. R.B. Mane, B.B. Panigrahi, Effect of alloying order on non-isothermal sintering kinetics of mechanically alloyed high entropy alloy powders. Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.01.092

    Article  Google Scholar 

  16. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, Effect of v content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2014.12.157

    Article  Google Scholar 

  17. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics (2015). https://doi.org/10.1016/j.intermet.2015.01.004

    Article  Google Scholar 

  18. C. Shang, E. Axinte, J. Sun, X. Li, P. Li, J. Du, P. Qiao, Y. Wang, CoCrFeNi(W1 − xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des. 117, 193–202 (2017). https://doi.org/10.1016/j.matdes.2016.12.076

    Article  CAS  Google Scholar 

  19. D. Wei, X. Li, W. Heng, Y. Koizumi, F. He, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Novel Co-rich high entropy alloys with superior tensile properties. Mater. Res. Lett. 7, 82–88 (2019). https://doi.org/10.1080/21663831.2018.1553803

    Article  CAS  Google Scholar 

  20. D. Wei, X. Li, S. Schönecker, J. Jiang, W.M. Choi, B.J. Lee, H.S. Kim, A. Chiba, H. Kato, Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys. Acta Mater. 181, 318–330 (2019). https://doi.org/10.1016/j.actamat.2019.09.050

    Article  CAS  Google Scholar 

  21. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019

    Article  CAS  Google Scholar 

  22. P.K. Gokuldoss, S. Kolla, J. Eckert, Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials (2017). https://doi.org/10.3390/ma10060672

    Article  Google Scholar 

  23. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  24. A.A. Popovich, N.G. Razumov, Dissolution of alloying elements and phase formation in powder materials Fe–18Cr–8Ni–12Mn − xN during mechanical alloying. Adv. Mater. Lett. 5, 683–687 (2014). https://doi.org/10.5185/amlett.2014.6585

    Article  CAS  Google Scholar 

  25. I.S. Goncharov, N.G. Razumov, A.O. Silin, N.E. Ozerskoi, A.I. Shamshurin, A. Kim, Q.S. Wang, A.A. Popovich, Synthesis of Nb-based powder alloy by mechanical alloying and plasma spheroidization processes for additive manufacturing. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.03.014

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation grant (Project No. 19-79-30002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Mazeeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhmutov, T., Razumov, N., Kim, A. et al. Synthesis of CoCrFeNiMnW0.25 High-Entropy Alloy Powders by Mechanical Alloying and Plasma Spheroidization Processes for Additive Manufacturing. Met. Mater. Int. 27, 50–54 (2021). https://doi.org/10.1007/s12540-020-00747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00747-0

Keywords

Navigation