Skip to main content
Log in

Effect of Fiber Length on Mechanical Properties of Injection Molded Long-Fiber-Reinforced Thermoplastics

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Fibers of long-fiber-reinforced thermoplastic (LFT) pellets are longer than those of short-fiber-reinforced thermoplastic (SFT) pellets produced by extrusion. To overcome the fiber length limitations of the SFT pellets, LFT pellets were prepared by a pultrusion process using continuous fibers, which afforded longer fibers. Currently, long glass-fiber-reinforced polypropylene (LGF-PP) materials, which are one of the growing markets of the plastics industry, are typically used, particularly for applications in the automotive industry where lightweight performance and cost savings are required. The LFT pellets are primarily converted into the final product by injection molding. During the injection molding process, the LFT pellets are broken and the fiber length decreases as a consequence. In this study, glass and carbon-fiber-reinforced polypropylene of various pellet lengths (3-16 mm) were prepared by impregnating pultrusion process to evaluate the effect of mechanical properties according to fiber length. The length of the residual fibers recorded after injection molding were observed to decrease in proportion to the pellet length. Even with LFTs having the same material composition, the mechanical properties was different after injection molding according to the residual fiber length. In this injection molded LFT, the flexural modulus was higher as the residual fiber length was shorter. The impact strength was larger in samples without adhesive resin and the observed differences were larger for longer fiber lengths. From these results, the mechanical properties of LFT can be improved by understanding the properties of long fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. K. Friedrich and A. A. Almajid, Appl. Compos. Mater., 20, 107 (2013).

    Article  CAS  Google Scholar 

  2. T. Ishikawa, K. Amaoka, Y. Masubuchi, T. Yamamoto, A. Yamanaka, M. Arai, and J. Takahashi, Compos. Sci. Technol, 155, 221 (2018).

    Article  CAS  Google Scholar 

  3. J. L. Thomason, Composites, 33, 1641 (2002).

    Article  Google Scholar 

  4. J. L. Thomason and M. A. Vlug, Composites, 28A, 277 (1997).

    Article  CAS  Google Scholar 

  5. R. Wongpajana, S. Mathurosemontria, R. Takematsua, H. Y. Xua, P. Uawongsuwanb, S. Thumsorna, and H. Hamada, Energy Procedia., 89, 328 (2016).

    Article  Google Scholar 

  6. J. S. Kim and D. H. Kim, J. Thermoplastic Compos. Mater, 58, 1599 (2015).

    Article  Google Scholar 

  7. N. Hirano, H. Muramatsu, and T. Inoue, Adv. Compos. Mater, 23, 151 (2013).

    Article  Google Scholar 

  8. S. Yao, F. Jin, K. Y. Rhee, D. Hui, and S. Park, Compos. Part B: Eng., 142, 241 (2018).

    Article  CAS  Google Scholar 

  9. M. Rohde, A. Ebel, F. Wolff-Fabris, and V. Altstadt, Int Polym. Proc., 26, 292 (2011).

    Article  CAS  Google Scholar 

  10. J. H. Phelps, A. I. Abd El-Rahman, V. Kunc, and C. L. Tucker HI, Compos Part A: Appl Sci. Manuf, 51, 11 (2013).

    Article  CAS  Google Scholar 

  11. J. L. Thomason, Compos. Part A: Appl. Sci. Manuf., 36, 995 (2005).

    Article  Google Scholar 

  12. V. Rizov, T. H., A. Reinhardt, and K. Friedrich, Polym. Polym. Compos, 13, 121 (2005).

    CAS  Google Scholar 

  13. H. Tseng, R. Chang, and C. Hsu, Compos. Sci. Technol, 144, 51 (2017).

    Article  CAS  Google Scholar 

  14. M. Rohde, A. Ebel, F. Wolff-Fabris, and V. Altstadt, Int Polym. Proc, 26, 292 (2011).

    Article  CAS  Google Scholar 

  15. R. Giusti, F. Zanini, and G. Lucchetta, Composites Part A, 112, 263 (2018).

    Article  CAS  Google Scholar 

  16. G. Meneghetti, M. Ricotta, G. Lucchetta, and S. Carmignato, Composites Part B, 65, 17 (2014).

    Article  CAS  Google Scholar 

  17. J. Wang, C. Geng, F. Luo, Y. Liu, K. Wang, Q. Fu, and B. He, Mater. Sci. Eng. A, 528, 3169 (2011).

    Article  Google Scholar 

  18. D. Masato, J. Rathore, M. Sorgato, S. Carmignato, and G. Lucchetta, Mater. Des, 132, 496 (2017).

    Article  CAS  Google Scholar 

  19. R. von Turkovich and L. Erwin, Polym. Eng. Sci., 23, 743 (1983).

    Article  Google Scholar 

  20. A. Inoue, K. M. Tanaka, and T. Y. Arao, Y. Sawada, J. Compos. Mater, 49, 75 (2015).

    Article  Google Scholar 

  21. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids, 13, 329 (1965).

    Article  CAS  Google Scholar 

  22. D. Veazey, T. Hsu, and E. D. Gomez, J. Appl. Polym. Sci, 134, 44441 (2017).

    Article  Google Scholar 

  23. M. Xia, H. Hamada, and Z. Maekawa, Intern. Polym. Processing, 10, 74 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ok Park.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: The authors would like to thank LOTTE CHEMICAL Research Institute for supporting the test and preparing the LFT samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Park, O.O. Effect of Fiber Length on Mechanical Properties of Injection Molded Long-Fiber-Reinforced Thermoplastics. Macromol. Res. 28, 433–444 (2020). https://doi.org/10.1007/s13233-020-8056-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8056-6

Keywords

Navigation