Skip to main content
Log in

Breakdown of Barkhausen Criticality in an Ultrathin Ferromagnetic Film

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Analysis of Barkhausen avalanches in thin films of magnetic material has been an active area of research due to the proximity of the dimensionality crossover. However, the measurement of avalanches in ultrathin films (thickness <~ 20 nm) by conventional inductive pick-up methods is challenging due to the small mass of the material involved. Here, we describe an optical method to analyze Barkhausen avalanches in ultrathin magnetic films with a temporal resolution of ~ 10 μs. We measure the avalanche statistics of 15-nm thick film of NiFe grown by pulsed laser ablation, where we observe a breakdown of the power-law probability distributions of s and T as well as a breakdown of the power-law relation between <s(T)> and <T>. The observations could not be explained within the framework of the established front propagation or nucleation models under adiabatic evolution. We attempt to explain our findings by performing simulations of the 2D random field Ising model under non-adiabatic evolution with a constant field step, and obtain good qualitative agreement between experimental and simulated probability distributions for high disorder levels. We conclude that the observed peculiarities are a consequence of strong pinning and the departure from the adiabatic condition during magnetic field sweep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Papanikolaou, S., Bohn, F., Sommer, R.L., Durin, G., Zapperi, S., Sethna, J.P.: Universality beyond power laws and the average avalanche shape. Nat. Phys. 7, 316–320 (2011). https://doi.org/10.1038/nphys1884

    Article  Google Scholar 

  2. Bohn, F., Corrêa, M.A., Carara, M., Papanikolaou, S., Durin, G., Sommer, R.L.: Statistical properties of Barkhausen noise in amorphous ferromagnetic films. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 90, 032821 (2014). https://doi.org/10.1103/PhysRevE.90.032821

    Article  ADS  Google Scholar 

  3. Durin, G., Bohn, F., Corrêa, M.A., Sommer, R.L., Le Doussal, P., Wiese, K.J.: Quantitative scaling of magnetic avalanches. Phys. Rev. Lett. 117, 087201 (2016). https://doi.org/10.1103/PhysRevLett.117.087201

    Article  ADS  Google Scholar 

  4. Zapperi, S., Cizeau, P., Durin, G., Stanley, H.: Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen effect. Phys. Rev. B. 58, 6353–6366 (1998). https://doi.org/10.1103/PhysRevB.58.6353

    Article  ADS  Google Scholar 

  5. Bohn, F., Durin, G., Correa, M.A., Machado, N.R., Della Pace, R.D., Chesman, C., Sommer, R.L.: Playing with universality classes of Barkhausen avalanches. Sci. Rep. 8, 11294 (2018). https://doi.org/10.1038/s41598-018-29576-3

    Article  ADS  Google Scholar 

  6. Roy, A., Kumar, P.S.A.: A study of Barkhausen avalanche statistics through the critical disorder in a ferromagnetic thin film : Experimental investigation and theoretical modeling. J. Magn. Magn. Mater. 493, 165710 (2020). https://doi.org/10.1016/j.jmmm.2019.165710

    Article  Google Scholar 

  7. Roy, A., Kumar, P.S.A.: Geometry dependent crossover of Barkhausen statistics in iron thin films. Phys. E Low-dimensional Syst. Nanostructures. 106, 19 (2019). https://doi.org/10.1016/j.physe.2018.10.023

    Article  ADS  Google Scholar 

  8. Roy, A., Kumar, P.S.A.: An extension of the Néel-Brown model for systems with multiple switching pathways. J. Magn. Magn. Mater. 424, 69–75 (2017). https://doi.org/10.1016/j.jmmm.2016.09.070

    Article  ADS  Google Scholar 

  9. Roy, A., Kumar, P.S.A.: Suppression of Barkhausen noise due to exchange biasing in Fe-FeMn bilalayers. AIP Conf. Proc. 1536, 1025–1026 (2013). https://doi.org/10.1063/1.4810582

    Article  ADS  Google Scholar 

  10. Qiu, Z.Q., Bader, S.D.: Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1243 (2000). https://doi.org/10.1063/1.1150496

    Article  ADS  Google Scholar 

  11. Zani, M., Puppin, E.: Temperature dependent criticality of Barkhausen noise in thin Fe films. J. Magn. Magn. Mater. 272–276, E865–E867 (2004). https://doi.org/10.1016/j.jmmm.2003.12.191

    Article  Google Scholar 

  12. Puppin, E.: Statistical properties of barkhausen noise in thin Fe films. Phys. Rev. Lett. 84, 5415–5418 (2000). https://doi.org/10.1103/PhysRevLett.84.5415

    Article  ADS  Google Scholar 

  13. Lee, H.-S., Ryu, K.-S., Jeon, K.-R., Parkin, S.S.P., Shin, S.-C.: Breakdown of Barkhausen critical-scaling behavior with increasing domain-wall pinning in ferromagnetic films. Phys. Rev. B. 83, 060410 (2011). https://doi.org/10.1103/PhysRevB.83.060410

    Article  ADS  Google Scholar 

  14. Shin, S.-C., Ryu, K.-S., Kim, D.-H., Akinaga, H.: Two-dimensional critical scaling behavior of Barkhausen avalanches (invited). J. Appl. Phys. 103, 07D907 (2008). https://doi.org/10.1063/1.2830967

    Article  Google Scholar 

  15. Im, M.-Y., Fischer, P., Kim, D.-H., Shin, S.-C.: Direct observation of individual Barkhausen avalanches in nucleation-mediated magnetization reversal processes. Appl. Phys. Lett. 95, 182504 (2009). https://doi.org/10.1063/1.3256188

    Article  ADS  Google Scholar 

  16. Ryu, K.-S., Akinaga, H., Shin, S.-C.: Tunable scaling behaviour observed in Barkhausen criticality of a ferromagnetic film. Nat. Phys. 3, 547–550 (2007). https://doi.org/10.1038/nphys659

    Article  Google Scholar 

  17. Atiq, S., Siddiqi, S.A., Lee, H.-S., Anwar, M.S., Shin, S.-C.: Structure-independent universality of Barkhausen criticality in iron nitride thin films. Solid State Commun. 150, 1169–1172 (2010). https://doi.org/10.1016/j.ssc.2010.04.022

    Article  ADS  Google Scholar 

  18. Yang, S., Erskine, J.: Domain wall dynamics and Barkhausen jumps in thin-film permalloy microstructures. Phys. Rev. B. 72, 064433 (2005). https://doi.org/10.1103/PhysRevB.72.064433

    Article  ADS  Google Scholar 

  19. Santi, L., Bohn, F., Viegas, A.D.C., Durin, G., Magni, A., Bonin, R., Zapperi, S., Sommer, R.L.: Effects of thickness on the statistical properties of the Barkhausen noise in amorphous films. Phys. B Condens. Matter. 384, 144–146 (2006). https://doi.org/10.1016/j.physb.2006.05.176

    Article  ADS  Google Scholar 

  20. Lee, H.-S., Ryu, K.-S., You, C.-Y., Jeon, K.-R., Yang, S.-H., Parkin, S.S.P., Shin, S.-C.: Asymmetric stochasticity of magnetization reversal dynamics in exchange-biased IrMn/CoFe Film. J. Appl. Phys. 111, 07D731 (2012). https://doi.org/10.1063/1.3694022

    Article  Google Scholar 

  21. Lee, H.-S., Ryu, K.-S., Kang, I.-S., Shin, S.-C.: Universal Barkhausen critical scaling behavior observed in NixFe1−x (x = 0−0.5) films. J. Appl. Phys. 109, 07E101 (2011). https://doi.org/10.1063/1.3536350

    Article  Google Scholar 

  22. Papanikolaou, S.: Shearing a glass and the role of pinning delay in models of interface depinning. Phys. Rev. E. 93, 1–7 (2016). https://doi.org/10.1103/PhysRevE.93.032610

    Article  MathSciNet  Google Scholar 

  23. Karimi, K., Ferrero, E.E., Barrat, J.L.: Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids. Phys. Rev. E. 95, 1–9 (2017). https://doi.org/10.1103/PhysRevE.95.013003

    Article  Google Scholar 

  24. Alessandro, B., Beatrice, C., Bertotti, G., Montorsi, A.: Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory. J. Appl. Phys. 68, 2901 (1990). https://doi.org/10.1063/1.346423

    Article  ADS  Google Scholar 

  25. Alessandro, B., Beatrice, C., Bertotti, G., Montorsi, A.: Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II. Experiments. J. Appl. Phys. 68, 2908 (1990). https://doi.org/10.1063/1.346424

    Article  ADS  Google Scholar 

  26. Spasojević, D., Bukvić, S., Milošević, S., Stanley, H.E.: Barkhausen noise: Elementary signals, power laws, and scaling relations. Phys. Rev. E. 54, 2531–2546 (1996). https://doi.org/10.1103/PhysRevE.54.2531

    Article  ADS  Google Scholar 

  27. Perković, O., Dahmen, K., Sethna, J.: Avalanches, barkhausen noise, and plain old criticality. Phys. Rev. Lett. 75, 4528–4531 (1995). https://doi.org/10.1103/PhysRevLett.75.4528

    Article  ADS  Google Scholar 

  28. Perković, O., Dahmen, K., Sethna, J.: Disorder-induced critical phenomena in hysteresis: Numerical scaling in three and higher dimensions. Phys. Rev. B. 59, 6106–6119 (1999). https://doi.org/10.1103/PhysRevB.59.6106

    Article  ADS  Google Scholar 

  29. Schryer, N.L., Walker, L.R.: The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974). https://doi.org/10.1063/1.1663252

    Article  ADS  Google Scholar 

  30. Spasojević, D., Janićević, S., Knežević, M.: Analysis of spanning avalanches in the two-dimensional nonequilibrium zero-temperature random-field Ising model. Phys. Rev. E. 89, 012118 (2014). https://doi.org/10.1103/PhysRevE.89.012118

    Article  ADS  Google Scholar 

  31. Pérez-Reche, F., Vives, E.: Spanning avalanches in the three-dimensional Gaussian random-field Ising model with metastable dynamics: Field dependence and geometrical properties. Phys. Rev. B. 70, 214422 (2004). https://doi.org/10.1103/PhysRevB.70.214422

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Roy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Kumar, P.S.A. Breakdown of Barkhausen Criticality in an Ultrathin Ferromagnetic Film. J Supercond Nov Magn 33, 2773–2778 (2020). https://doi.org/10.1007/s10948-020-05513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05513-2

Keywords

Navigation