Skip to main content
Log in

Optical Absorption of a Composite Based on Bilayer Metal–Dielectric Spherical Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

Optical properties of core–shell (metal) nanoparticles and composites based on them were investigated in the classical approximation. Frequency dependences of the real and imaginary parts of the dielectric permittivity of bilayer particles and absorption coefficients of composites based on them were calculated. Small-scale oscillations of the real and imaginary parts of the dielectric permittivity and absorption coefficient were found in the low-frequency spectral region. The behavior of the dielectric permittivity of bilayer nanoparticles was analyzed for the limiting cases of thin and thick shells. The influence of the effective mean free pathlength of electrons on the optical characteristics of the bilayer nanoparticles was considered. Two maxima of the composite absorption coefficient were demonstrated to be due to hybridization of polar modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. N. Khlebtsov and N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transfer, 107, 306–314 (2007).

    Article  ADS  Google Scholar 

  2. K. Tanabe, J. Phys. Chem., 112, 15721–15728 (2008).

    Google Scholar 

  3. M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys. Chem. Lett., 113, 3041–3045 (2009).

    Article  Google Scholar 

  4. H. Y. Chung, H. Y. Xie, P. T. Leung, and D. P. Tsai, Solid State Commun., 149, 2151–2155 (2009).

    Article  ADS  Google Scholar 

  5. M. A. Garcia, J. Phys. D: Appl. Phys., 44, 283001 (2011).

    Article  Google Scholar 

  6. V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. Iati, J. Phys.: Condens. Matter, 29, 203002 (2017).

    ADS  Google Scholar 

  7. V. Yu. Reshetnyak, I. P. Pinkevych, T. J. Sluckin, A. M. Urbas, and D. R. Evans, Eur. Phys. J. Plus, 133, 373 (2018).

    Article  Google Scholar 

  8. Y. Ye, T. P. Chen, Z. Liu, and X. Yuan, Nanoscale Res. Lett., 13, No. 1, 299 (2018).

    Article  ADS  Google Scholar 

  9. V. I. Balykin and P. N. Melent’ev, Usp. Fiz. Nauk, 188, No. 2, 143–168 (2018).

  10. A. V. Korotun, A. A. Koval’, and V. I. Reva, Zh. Prikl. Spektrosk., 86, No. 4, 549–556 (2019) [A. V. Korotun, A. A. Koval’, and V. I. Reva, J. Appl. Spectrosc., 86, 606–612 (2019)].

  11. N. Kalyaniwalla, J. W. Haus, R. Inguva, and M. H. Birnboim, Phys. Rev. A: At., Mol., Opt. Phys., 42, No. 9, 5613–5621 (1990).

  12. R. D. Averitt, S. L. Westcott, and N. J. Halas, J. Opt. Soc. Am. B, 16, No. 10, 1824–1832 (1999).

    Article  ADS  Google Scholar 

  13. B. Khlebtsov, L. Dykman, V. Bogatyrev, V. Zharov, and N. Khlebtsov, Nanoscale Res. Lett., 2, 6–11 (2007).

    Article  ADS  Google Scholar 

  14. C. Loo, L. Hirsch, M.-H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, Opt. Lett., 30, No. 9, 1012–1014 (2005).

    Article  ADS  Google Scholar 

  15. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Trends Biotechnol., 24, No. 2, 62–67 (2006).

    Article  Google Scholar 

  16. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Lasers Med. Sci., 23, 217–228 (2008).

    Article  Google Scholar 

  17. G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, Nanotechology, 19, 015701 (2008).

    Article  ADS  Google Scholar 

  18. A. I. Sidorov, Zh. Tekh. Fiz., 76, No. 10, 136–139 (2006).

    Google Scholar 

  19. J. A. Gordon and R. W. Ziolkowski, Opt. Express, 15, No. 5, 2622–2653 (2007).

    Article  ADS  Google Scholar 

  20. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and B. N. Khlebtsov, Ross. Nanotekhnol., 2, 69–86 (2007).

    Google Scholar 

  21. J. Li, G. Sun, and C. T. Chan, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 075117 (2006).

  22. C. Tserkezis, G. Gantzounis, and N. Stefanou, J. Phys.: Condens. Matter, 20, 075232 (2008).

    ADS  Google Scholar 

  23. A. V. Goncharenko, Chem. Phys. Lett., 386, 25–31 (2004).

    Article  ADS  Google Scholar 

  24. H. D. van de Hulst, Light Scattering by Small Particles, Wiley, New York (1957) [Russian translation, IIL, Moscow (1961), p. 92].

  25. U. Kreibig and M. Volmer, Optical Properties of Metal Clusters, Springer, Berlin (1995), p. 81.

    Book  Google Scholar 

  26. W. A. Kraus and G. C. Schatz, J. Chem. Phys., 79, 6130–6139 (1983).

    Article  ADS  Google Scholar 

  27. N. I. Grigorchuk and P. M. Tomchuk, Phys. Rev. B: Condens. Matter Mater. Phys., 84, No. 8, 085448 (2011).

    Article  ADS  Google Scholar 

  28. P. M. Tomchuk and D. V. Butenko, Ukr. Fiz. Zh., 60, No. 10, 1043–1049 (2015).

    Google Scholar 

  29. C. G. Granqvist and O. Hunderi, J. Phys. B: At. Mol. Phys., 30, 47–51 (1978).

    Google Scholar 

  30. S. M. Kachan and A. N. Ponyavina, J. Mol. Struct., 563564, 267–272 (2001).

  31. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, London (1977) [Russian translation, Mir, Moscow (1979), pp. 20, 25].

  32. C. Fall, Ab initio Study of the Work Functions of Elemental Metal Crystals, EPFL, Lausanne (1999).

    Google Scholar 

  33. A. Animalu, Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, Englewood Cliffs, NJ (1977) [Russian translation, Mir, Moscow (1981), p. 244].

  34. W. A. Harrison, Solid State Theory, McGraw-Hill Book Co., New York (1970) [Russian translation, Mir, Moscow (1972), p. 148].

  35. P. B. Johnson and R. W. Christy, Phys. Rev. B: Solid State, 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  36. I. I. Shaganov, T. S. Perova, and K. Berwick, Photon. Nanostruct. — Fundam. Appl., 27, 24 (2017).

    Article  Google Scholar 

  37. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science, 302, 419–422 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korotun.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 224–232, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotun, A.V., Koval’, A.A. & Titov, I.N. Optical Absorption of a Composite Based on Bilayer Metal–Dielectric Spherical Nanoparticles. J Appl Spectrosc 87, 240–248 (2020). https://doi.org/10.1007/s10812-020-00991-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00991-7

Keywords

Navigation