Skip to main content
Log in

Exact Analytic Representations for the Integral Characteristics of a Four-Point Coherence Function for Laser Beams in Turbulent Media

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new integral-functional equation is derived for the four-dimensional Fourier transform of the four-point coherence function of laser beams in turbulent media and two families of exact analytical solutions of this equation are found. These solutions hold for any level of fluctuations of the refractive index of air. They are used to obtain exact analytic representations of the integral characteristics of the four-point coherence function. In particular, the truncated spectral characteristics of the spatial correlation function of the intensities are found. These representations can be used to test asymptotic, numerical, and other methods for finding this function and to describe its integral properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Tatarskii, Wave Propagation in Turbulent Atmospheres [in Russian], Nauka, Moscow (1967), pp. 143–157.

    Google Scholar 

  2. V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved., Radiofi zika, 10, No. 12, 1762–1765 (1967).

  3. A. Ishimaru, Wave Propagation and Scattering in Randomly-Nonuniform Media, Part 2 [Russian translation] Mir, Moscow (1981), pp. 100–102.

  4. L. S. Dolin, Izv. Vyssh. Uchebn. Zaved., Radiofi zika, 7, No. 3, 559–562 (1964).

  5. A. V. Falits, Opt. Atm. Okeana, 28, No. 9, 763–771 (2015).

    Google Scholar 

  6. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi , and S. Ashrafi , Adv. Opt. Photon, 7, 66–106 (2015).

    Article  Google Scholar 

  7. G. Gbur, J. Opt. Soc. Am. A, 31, No. 9, 2038–2045 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  8. I. G. Yakushkin, Izv. Vyssh. Uchebn. Zaved., Radiofi zika, 19, No. 3, 384–391 (1976).

  9. I. P. Lukin, Opt. Atm. Okeana, 31, No. 9, 685–697 (2018).

    Google Scholar 

  10. V. U. Zavorotnyi, V. I. Klyatskin, and V. I. Tatarskii, Zh. Eksp. Teor. Fiz., 73, No. 2(8), 481–497 (1977).

  11. I. P. Lukin, Opt. Atm. Okeana, 30, No. 8, 672–681 (2017).

    Google Scholar 

  12. V. A. Banakh, L. O. Gerasimova, and A. V. Falits, Opt. Atm. Okeana, 29, No. 5, 369–376 (2016).

    Google Scholar 

  13. Propagation of laser beams in the atmosphere, in: D. Stroben (Ed.), Problems in Applied Physics, Mir, Moscow (1981), 84, 107, 112–114, 147–158, 175.

  14. Fei Wang, Xianlong Liu, and Yangjian Cai, Progr. Electromagn. Res., 150, 123–143 (2015).

  15. Z. C. Chen, P. Li, J. Pu Ding, and D. Zhao, Appl. Phys. B, 107, No. 2, 469–472 (2012).

    Article  ADS  Google Scholar 

  16. V. A. Banakh and I. N. Smalikho, Opt. Express, 22, No. 19, 1–13 (2014).

    Article  ADS  Google Scholar 

  17. V. A. Banakh, L. O. Gerasimova, and I. N. Smalikho, Kvant. Élektron., 45, No. 3, 258–260 (2015).

    Article  ADS  Google Scholar 

  18. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radio Physics, Part 2. Random Fields [in Russian], Nauka, Moscow (1978), pp. 355, 367–369.

  19. N. N. Rogovtsov, Zh. Prikl. Spektrosk., 34, No. 2, 335–341 (1981) [J. Appl. Spectrosc., 34, 241–246 (1981)].

  20. N. N. Rogovtsov, Zh. Prikl. Spektrosk., 35, No. 6, 1044–1050 (1981) [N. N. Rogovtsov, J. Appl. Spectrosc., 35, 1354–1359 (1981).

  21. N. N. Rogovtsov, Izv. AN SSSR, Fiz. Atm. Okeana, 21, No. 10, 1111–1112 (1985).

  22. N. N. Rogovtsov, Zh. Prikl. Spektrosk., 43, No. 1, 142–148 (1985) [J. Appl. Spectrosc., 43, 813–816 (1985)].

  23. N. N. Rogovtsov, Properties and Principles of Invariance. Application of the Solution of Problems in Mathematical Physics [in Russian], Part 1, MO RB, BGPA, Minsk (1999), pp. 283–374.

  24. N. N. Rogovtsov, Diff. Uuravneniya, 44, No. 9, 1205–1221 (2008).

    MathSciNet  Google Scholar 

  25. N. N. Rogovtsov, General invariance relations reduction method and its applications to solutions of radiative transfer problems for turbid media of various configurations, in: A. A. Kokhanovsky (Ed.), Light Scattering Reviews5, Springer-Praxis, Chichester (2010), pp. 243–327.

  26. N. N. Rogovtsov, Diff. Uravneniya, 51, 263–276 and 650–662 (2015).

  27. N. N. Rogovtsov and F. Borovik, J. Quant. Spectrosc. Radiat. Transf., 183, 128–153 (2016).

    Article  ADS  Google Scholar 

  28. N. N. Rogovtsov, in: Non-Stable Universe: Energetic Resources, Activity Phenomena, and Evolutionary Processes, ASP Conf. Ser. 511, A. M. Mickaelian, H. A. Harutyunian, and E. H. Nikoghosyan (Eds.), San Francisco, Astronomical Society of the Pacific (2017), pp. 276–281.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rogovtsov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 204–211, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogovtsov, N.N., Anisimov, V.Y. Exact Analytic Representations for the Integral Characteristics of a Four-Point Coherence Function for Laser Beams in Turbulent Media. J Appl Spectrosc 87, 221–228 (2020). https://doi.org/10.1007/s10812-020-00988-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00988-2

Keywords

Navigation