Skip to main content

Advertisement

Log in

Fe2O3/hemp straw-based porous carbon composite for supercapacitor electrode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The porous activated carbon material was prepared using hemp straw as the biomass carbon source, which was used as the substrate material to synthesize Fe2O3/porous carbon nanocomposites (Fe2O3/HAC) by simple and effective hydrothermal method. The results show that the porous activated carbon based on hemp straw is an ideal substrate for Fe2O3, which can effectively avoid the agglomeration of metal oxides, increase the contact area with electrolyte, and shorten the ion diffusion path, so as to improve the electrochemical performance of the material. In three-electrode system, the electrochemical performance of Fe2O3/HAC is much higher than that of HAC and Fe2O3 alone. At the current density of 1 A g−1, its specific capacitance is 256 F g−1, and it has the best capacity retention. The symmetrical device composed of the material has a good capacitance value and excellent cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46(5):1094–1103

    CAS  PubMed  Google Scholar 

  2. Ekrami E, Dadashian F, Soleimani M (2014) Waste cotton fibers based activated carbon: optimization of process and product characterization. Fiber Polym 15:1855–1864

  3. Duggal AR, Levinson LM (1997) A novel high current density switching effect in electrically conductive polymer composite materials. J Appl Phys 82(11):5532–5539

    CAS  Google Scholar 

  4. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous grapheme-like nanosheets for high-power supercapacitors. J Mater Chem 1(21):6462–6477

    CAS  Google Scholar 

  5. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H (2017) Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem 5(18):1024–1039

    Google Scholar 

  6. Chen F, Zhang X, Liang H, Kong M, Guan Q, Chen P, Wu Z, Yu S (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    CAS  PubMed  Google Scholar 

  7. Lochmann S, Grothe J, Kai E, Leistenschneider D, Borchardt L, Kaskel S (2018) Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures. Nanoscale 10(21):10109–10115

    CAS  PubMed  Google Scholar 

  8. Li Z, Yang L, Cao H, Chang Y, Tang K, Cao Z, Chang J, Cao Y, Wang W, Gao M (2017) Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohydr Polym 175(1):223–230

    CAS  PubMed  Google Scholar 

  9. Tooming T, Thomberg T, Romann T, Palm R, Lust E (2013) Carbon materials for supercapacitor application by hydrothermal carbonization of D-glucose. Iop Conf 49:2013–2022

  10. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785

    CAS  PubMed  Google Scholar 

  11. Li Y, Meng Q, Zhu SM, Sun ZH, Yang H, Chen ZX, Zhu CL, Guo ZP, Zhang D (2015) A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries. Dalton Trans 44(10):4594–4600

    CAS  PubMed  Google Scholar 

  12. Huang L, Chen D, Ding Y, Feng S, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13(7):3135–3139

    CAS  PubMed  Google Scholar 

  13. Luo B, Yang H, Liu S, Fu W, Sun P, Yuan M, Zhang Y, Liu Z (2008) Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti-6Al-4V alloy. Mater Lett 62(30):4512–4515

    CAS  Google Scholar 

  14. Ma M, Zhu Y, Sun Q, Li X, Su J, Zhao L, Zhao Y, Qiu S, Yan W, Wang K (2015) The asymmetric synthesis of CF3-containing spiro [pyrrolidin-3, 2-oxindole] through the organocatalytic 1,3-dipolar cycloaddition reaction. Chem Commun 51(42):8789–8792

    CAS  Google Scholar 

  15. Sun Q, Li X, Su J, Zhao L, Ma M, Zhu Y, Zhao Y, Zhu R, Yan W, Wang K (2015) The squaramide-catalyzed 1,3-dipolar cycloaddition of nitroalkenes with N-2,2,2-trifluoroethylisatin ketimines: an approach for the synthesis of 5′-trifluoromethyl-spiro[pyrrolidin-3,2′-oxindoles]. Adv Synth Catal 357(14–15):3187–3196

    CAS  Google Scholar 

  16. Liu S, Fu W, Yang H, Li M, Peng S, Luo B, Yu Q, Wei R, Yuan M, Zhang Y (2010) Synthesis and characterization of self-organized oxide nanotube arrays via a facile electrochemical anodization. China Ceramics 10(7):227–230

    Google Scholar 

  17. Lu Q, Chen JG, Xiao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed 52(7):1882–1889

    CAS  Google Scholar 

  18. Xu C, Li Z, Yang C, Zou P, Xie B, Lin Z, Zhang Z, Li B, Kang F, Wong C (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28(21):4105–4110

    CAS  PubMed  Google Scholar 

  19. Liu L, Zhao H, Lei Y (2019) Nanoarchitectured current collectors: review on nanoarchitectured current collectors for pseudocapacitors. Small Methods 3(8):231–244

    Google Scholar 

  20. Deng T, Zhang W, Arcelus O, Kim JG, Rojo T (2017) Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun 8:15194–15203

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Sources 327:297–318

    CAS  Google Scholar 

  22. Nithya VD, Sabari AN (2016) Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 4(28):10767–10778

    CAS  Google Scholar 

  23. Zeng Y, Yu M, Meng Y, Fang P, Lu X, Tong Y (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6(24):1601053–1601070

    Google Scholar 

  24. Lee LL, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES (2012) α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4(9):2958–2961

    CAS  PubMed  Google Scholar 

  25. Low QX, Ho GW (2014) Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano Energy 5:28–35

    CAS  Google Scholar 

  26. Sethuraman B, Purushothaman KK, Muralidharan G (2013) Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors. RSC Adv 4(9):4631–4612

    Google Scholar 

  27. Prade T, Svensson S, Andersson A, Mattsson JE (2011) Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 35(7):3040–3049

    Google Scholar 

  28. Paredes JI, Villar-Rodil S, Marti Nez-Alonso A, Tasco NJMD (2008) Graphene oxide dispersions in organic solvents. LANGMUIR 24(19):10560–10564

    CAS  PubMed  Google Scholar 

  29. Guan D, Gao Z, Yang WL, Wang J, Yuan Y, Wang B, Zhang ML, Liu LH (2013) Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Mater Sci Eng B 178(10):736–743

    CAS  Google Scholar 

  30. Tan Z, Chen G, Zhu Y (2011) Carbon-based Supercapacitors produced by the activation of graphene. John Wiley & Sons Ltd 332(6037):1537–1542

    Google Scholar 

  31. Hu Y, Guan C, Ke Q, Yow ZF, Cheng C, Wang J (2016) Hybrid Fe2O3 nanoparticle clusters/rGO paper as an effective negative electrode for flexible Supercapacitors. Chem Mater 28(20):2576–2585

    Google Scholar 

  32. Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Shi C, Wei Q (2017) Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun 8:14264–14273

    PubMed  PubMed Central  Google Scholar 

  33. Thommes M (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 38(1):25–32

    Google Scholar 

  34. Lu W, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1(3):356–361

    Google Scholar 

  35. Wakeland S, Martinez R, Grey JK, Luhrs CC (2010) Production of graphene from graphite oxide using urea as expansion-reduction agent. Carbon 48(12):3463–3470

    CAS  Google Scholar 

  36. Klahr BM, Martinson ABF, Hamann TW (2011) Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. LANGMUIR 27(1):461–468

    CAS  PubMed  Google Scholar 

  37. Guan LJ, Wang Y, Mao L, Fan Z, Shen Z, Zhang H, Wang J (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9(5):5198–5207

    CAS  PubMed  Google Scholar 

  38. Binitha G, Soumya MS, Madhavan AA, Praveen P, Sivakumar N (2013) Electrospun a-Fe2O3 nanostructures for supercapacitor applications. J Mater Chem A 1(38):11698–11704

    CAS  Google Scholar 

  39. Fan ZI, Qin XU, Sun HU, Zhu ZI, Deng WI (2013) Superhydrophobic mesoporous graphene for separation and absorption. Chem Plus Chem 78(10):1282–1287

    CAS  PubMed  Google Scholar 

  40. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565

    CAS  Google Scholar 

  41. Luo C, Niu S, Zhou G, Lv W, Li B, Kang F, Yang QH (2016) Dual-functional hard template directed one-step formation of a hierarchical porous carbon-carbon nanotube hybrid for lithium-sulfur batteries. Chem Commun 52(82):12143–12146

    CAS  Google Scholar 

  42. Fei H, Peng Z, Li L, Yang Y, Wei L, Errol LGS, Xiu F, James MT (2014) Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res 7(4):1–9

    Google Scholar 

  43. Reddy MV, Yu T, Sow CH, Shen ZX, Lim CT, Subba Rao GV, Chowdari BVR (2007) α-Fe2O3 Nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17(15):2792–2799

    CAS  Google Scholar 

  44. Jeong JM, Choi BG, Lee SC, Lee KG, Huh YS (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25(43):6250–6255

    CAS  PubMed  Google Scholar 

  45. Zhou Y, Ma R, Candelaria SL, Wang J, Liu Q, Uchaker E, Li P, Chen Y, Cao G (2016) Phosphorus/sulfur co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J Power Sources 314:39–48

    CAS  Google Scholar 

  46. Long C, Jiang L, Wei T, Yan J, Fan Z (2014) High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J Mater Chem A 2(39):16678–16686

    CAS  Google Scholar 

  47. Suresh R, Giribabu K, Manigandan R, Stephen A, Narayanan V (2014) Fabrication of Ni-Fe2O3 magnetic nanorods and application to the detection of uric acid. RSC Adv 4(33):17146–17155

    CAS  Google Scholar 

  48. Yang P, Yong D, Lin Z, Chen Z, Zhong LW (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736

    CAS  PubMed  Google Scholar 

  49. Liu J, Chen M, Zhang L, Jiang J, Yan J, Huang Y, Lin J, Fan HJ, Shen ZX (2014) A flexible alkaline rechargeable Ni/Fe battery based on Graphene foam/carbon nanotubes hybrid film. Nano Lett 14(12):7180–7187

    CAS  PubMed  Google Scholar 

  50. Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7:86–96

    CAS  Google Scholar 

  51. Yoo H, Min M, Bak S, Yoon Y, Lee H (2014) A low ion-transfer resistance and high volumetric supercapacitor using hydrophilic surface modified carbon electrodes. J Mater Chem A 2(18):6663–6668

    CAS  Google Scholar 

  52. Sodtipinta J, Amornsakchai T, Pakawatpanurut P (2017) Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode. Adv Nat Sci Nanosci Nanotechnol 8(3):35017–35028

    Google Scholar 

  53. Chao D, Liang P, Chen Z, Bai L, Shen ZX (2016) Pseudocapacitive Na-ion storage boosts high-rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11):10211–10219

    CAS  PubMed  Google Scholar 

  54. Zhan D, Ni Z, Chen W, Sun L, Luo Z, Lai L, Yu T, Wee ATS, Shen Z (2011) Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 49(4):1362–1366

    CAS  Google Scholar 

  55. Zhang D, Hao Y, Zheng L, Ma Y, Feng H, Luo H (2013) Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. J Mater Chem A 1(26):7584–7596

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [21567015, 21407072]; the CAS “Light of West China” Program; the National Key R&D Program of China [2016YFC0202900]; the Natural Science Foundation of Gansu Province [17JR5RA109]; the Gansu Provincial Institutions of Higher Learning Innovation Ability Promotion Project(2019A-220); the Gansu Province College Student Innovation and Entrepreneurship Training Program Project; and the Lanzhou University of Technology Hongliu First-class Discipline Construction Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaofeng Shi or Guoying Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Shi, G., Wang, G. et al. Fe2O3/hemp straw-based porous carbon composite for supercapacitor electrode materials. Ionics 26, 4039–4051 (2020). https://doi.org/10.1007/s11581-020-03547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03547-z

Keywords

Navigation