Skip to main content
Log in

Effect of Ginkgo biloba extract on pacemaker channels encoded by HCN gene

Wirkung von Ginkgo-biloba-Extrakt auf HCN-Gen-codierte Schrittmacherkanäle

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

In the present study, the electropharmacological activity of traditional Chinese medicine, Ginkgo biloba extract (GBE), on human hyperpolarization-activated nucleotide-gated (HCN) channels and the underlying “funny” currents was investigated.

Methods

Standard two-electrode voltage-clamp recordings were employed to examine the properties of cloned HCN subunit currents expressed in Xenopus oocytes under controlled conditions and GBE administration.

Results

We found that GBE irreversibly inhibited the HCN2 and HCN4 channel currents in a concentration-dependent fashion and that the HCN4 current was more sensitive to GBE compared with HCN2. In addition, GBE inhibition of the current amplitudes of HCN2 and HCN4 currents was accompanied by a decrease in the activation and deactivation kinetics.

Conclusion

The results of this study contribute toward illustrating the antiarrhythmic mechanism of GBE, which might be useful for the treatment of arrhythmia.

Zusammenfassung

Hintergrund

In der vorliegenden Studie wurde die elektropharmakologische Aktivität einer Form traditioneller chinesischer Medizin, des Ginkgo-biloba-Extrakts (GBE), auf humane hyperpolarisationsaktivierte nukleotidgesteuerte (HCN-)Kanäle und die zugrunde liegenden Ströme, „funny currents“, untersucht.

Methoden

Standardisierte Aufnahmen mit 2‑Elektroden-Spannungsklemmen wurden verwendet, um die Eigenschaften der Ströme geklonter HCN-Untereinheiten zu untersuchen, die in Xenopus-Oozyten unter kontrollierten Bedingungen und Anwendung von GBE exprimiert wurden.

Ergebnisse

Die Autoren stellten fest, dass GBE die HCN2- und HCN4-Kanalströme konzentrationsabhängig irreversibel hemmte und dass der HCN4-Strom empfindlicher auf GBE reagierte als HCN2. Darüber hinaus trat als Begleiterscheinung der GBE-Inhibition bei den Stromamplituden der HCN2- und HCN4-Ströme eine Verminderung der Aktivierungs- und Deaktivierungskinetik auf.

Schlussfolgerung

Die Ergebnisse der vorliegenden Studie tragen zur Veranschaulichung der antiarrhythmischen Mechanismen des GBE bei, welcher sich möglicherweise für die Behandlung von Arrhythmien eignet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472

    Article  CAS  Google Scholar 

  2. Ravagli E, Bucchi A, Bartolucci C, Paina M, Baruscotti M, DiFrancesco D (2016) Cell-specific dynamic clamp analysis of the role of funny If current in cardiac pacemaking. Prog Biophys Mol Biol 120:50–66

    Article  CAS  Google Scholar 

  3. Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  CAS  Google Scholar 

  4. Baruscotti M, Bucchi A, Difrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker (‘funny’) current. Pharmacol Ther 107:59–79

    Article  CAS  Google Scholar 

  5. Frace AM, Maruoka F, Noma A (1992) External K+ increases Na+ conductance of the hyperpolarization-activated current in rabbit cardiac pacemaker cells. Pflugers Arch 421:97–99

    Article  CAS  Google Scholar 

  6. Bucchi A, Baruscotti M, DiFrancesco D (2002) Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 120:1–13

    Article  CAS  Google Scholar 

  7. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    Article  CAS  Google Scholar 

  8. Ishii TM, Takano M, Xie LH, Noma A, Ohmori H (1999) Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J Biol Chem 274:12835–12839

    Article  CAS  Google Scholar 

  9. Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D (2003) Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol 549:347–359

    Article  CAS  Google Scholar 

  10. Er F, Larbig R, Ludwig A, Biel M, Hofmann F, Beuckelmann DJ, Hoppe UC (2003) Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 107:485–489

    Article  Google Scholar 

  11. Hoppe UC, Beuckelmann DJ (1998) Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes. Cardiovasc Res 38:788–801

    Article  CAS  Google Scholar 

  12. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, Robinson RB, Dixon JE, McKinnon D, Cohen IS (1999) Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 85:e1–e6

    Article  CAS  Google Scholar 

  13. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646–1652

    Article  CAS  Google Scholar 

  14. Fernández-Velasco M, Goren N, Benito G, Blanco-Rivero J, Boscá L, Delgado C (2003) Regional distribution of hyperpolarization-activated current (If) and hyperpolarization-activated cyclic nucleotide-gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts. J Physiol 553:395–405

    Article  Google Scholar 

  15. Huh H, Staba EJ (1992) The botany and chemistry of ginkgo biloba L. J Herbs Spices Med Plants 1:92–124

    Article  Google Scholar 

  16. Huang P, Zhang L, Chai C, Qian XC, Li W, Li JS, Di LQ, Cai BC (2014) Effects of food and gender on the pharmacokinetics of ginkgolides a, b, c and bilobalide in rats after oral dosing with ginkgo terpene lactones extract. J Pharm Biomed Anal 100:138–144

    Article  CAS  Google Scholar 

  17. Satoh H, Nishida S (2004) Electropharmacological actions of ginkgo biloba extract on vascular smooth and heart muscles. Clin Chim Acta 342:13–22

    Article  CAS  Google Scholar 

  18. Satoh H (2005) Suppression of pacemaker activity by ginkgo biloba extract and its main constituent, bilobalide in rat sino-atrial nodal cells. Life Sci 78:67–73

    Article  CAS  Google Scholar 

  19. Azene EM, Xue T, Marbán E, Tomaselli GF, Li RA (2005) Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers. Cardiovasc Res 67:263–273

    Article  CAS  Google Scholar 

  20. Bucchi A, Barbuti A, Baruscotti M, DiFrancesco D (2007) Heart rate reduction via selective ‘funny’ channel blockers. Curr Opin Pharmacol 7:208–213

    Article  CAS  Google Scholar 

  21. Tamura A, Ogura T, Uemura H, Reien Y, Kishimoto T, Nagai T, Komuro I, Miyazaki M, Nakaya H (2009) Effects of antiarrhythmic drugs on the hyperpolarization-activated cyclic nucleotide-gated channel current. J Pharmacol Sci 110:150–159

    Article  CAS  Google Scholar 

  22. Nishida S, Satoh H (2003) Mechanisms for the vasodilations induced by ginkgo biloba extract and its main constituent, bilobalide, in rat aorta. Life Sci 72:2659–2667

    Article  CAS  Google Scholar 

  23. Satoh H (2003) Effects of ginkgo biloba extract and bilobalide, a main constituent, on the ionic currents in guinea pig ventricular cardiomyocytes. Arzneimittelforschung 53:407–413

    CAS  PubMed  Google Scholar 

  24. Chen B, Cai J, Song LS, Wang X, Chen Z (2005) Effects of ginkgo biloba extract on cation currents in rat ventricular myocytes. Life Sci 76:1111–1121

    Article  CAS  Google Scholar 

  25. Chatterjee SS, Kondratskaya EL, Krishtal OA (2003) Structure-activity studies with ginkgo biloba extract constituents as receptor-gated chloride channel blockers and modulators. Pharmacopsychiatry 36(1):S68–S77

    CAS  PubMed  Google Scholar 

  26. Cermak R, Kuhn G, Wolffram S (2002) The flavonol quercetin activates basolateral K(+) channels in rat distal colon epithelium. Br J Pharmacol 135:1183–1190

    Article  CAS  Google Scholar 

  27. Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 868:741–764

    Article  CAS  Google Scholar 

  28. Biel M, Schneider A, Wahl C (2002) Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 12:206–212

    Article  CAS  Google Scholar 

  29. Wahl-Schott C, Biel M (2009) HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci 66:470–494

    Article  CAS  Google Scholar 

  30. Baruscotti M, Barbuti A, Bucchi A (2010) The cardiac pacemaker current. J Mol Cell Cardiol 48:55–64

    Article  CAS  Google Scholar 

  31. Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G, Gnecchi-Rusconi T, Montano N, Casali KR, Micheloni S, Barbuti A, DiFrancesco D (2011) Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc Natl Acad Sci USA 108:1705–1710

    Article  CAS  Google Scholar 

  32. Zicha S, Fernández-Velasco M, Lonardo G, L’Heureux N, Nattel S (2005) Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res 66:472–481

    Article  CAS  Google Scholar 

  33. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    Article  CAS  Google Scholar 

  34. Stillitano F, Lonardo G, Zicha S, Varro A, Cerbai E, Mugelli A, Nattel S (2008) Molecular basis of funny current (If) in normal and failing human heart. J Mol Cell Cardiol 45:289–299

    Article  CAS  Google Scholar 

  35. Wei-qing H, Qing-nuan K, Lin X, Cheng-hao G, Qi-yi Z (2011) Expression of hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN4) is increased in hypertrophic cardiomyopathy. Cardiovasc Pathol 20:110–113

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation for Distinguished Young Scholars of China under Grant No. 81500255, and Hubei Provincial Natural Science Foundation of China under Grant No. 2018CFB420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congxin Huang MD PhD.

Ethics declarations

Conflict of interest

H. Chen, Y. Chen, J. Yang, P. Wu, X. Wang and C. Huang declare that they have no competing interests.

For this article no studies with human participants were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case. The animals used in the study were treated in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and all the experimental methods were approved by the Animal Research Committee of the First Clinic College of Wuhan University (Wuhan, China).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen, Y., Yang, J. et al. Effect of Ginkgo biloba extract on pacemaker channels encoded by HCN gene. Herz 46, 255–261 (2021). https://doi.org/10.1007/s00059-020-04933-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-04933-z

Keywords

Schlüsselwörter

Navigation