Skip to main content

Advertisement

Log in

Numerical Modeling Evaluation of the Impacts of Shrimp Farming Operations on Long-term Coastal Lagoon Morphodynamics

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In coastal systems occupied by large clusters of pond aquaculture farms, hydro-sedimentary processes may be impacted by the combination of water management strategies that are individually performed by each cultivation unit. In this study, a numerical model was used to evaluate 100-year morphological alterations in two different idealized coastal lagoons surrounded by shrimp ponds. One is broadly based on the Guaraíras Lagoon System (RN, Brazil) where shrimp farming has developed since 1924, and the other is highly simplified to systematically investigate pond aquaculture impacts. Information obtained through numerical simulations (e.g., hypsometry changes, evolution of morphological parameters, balance of sediment volumes, bed level changes, and residual bed shear stress variations) provided coastal impact assessments for a wide variety of aquaculture occupation scenarios. Key findings include (i) water exchange operations performed by aquaculture farms are capable of modifying the morphological equilibrium state of a coastal lagoon system, especially if carried out synchronously to the local tidal oscillation; (ii) water intake operations regularly performed by pond aquaculture activity increase sediment import to the system; (iii) depth and configuration of tidal channels are modified when pond aquaculture is present. The modeling approach and analyses presented here can be extended to other systems that are under the influence of shrimp farming activity and be adopted to support novel regulations for the conservation of coastal habitats and to contribute to the sustainable development of pond aquaculture in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anthony, E.J., G. Brunier, M. Besset, M. Goichot, P. Dussouillez, and V.L. Nguyen. 2015. Linking rapid erosion of the Mekong River delta to human activities. Scientific Reports (Nature) 5: 14745. https://doi.org/10.1038/srep14745.

    Article  CAS  Google Scholar 

  • Baluyut, E.A. 1989. Aquaculture systems and practices: a selected review. ADCP/REP/89/43. FAO - United Nations Development Programme. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/T8598E/T8598E00.htm. Accessed 01 Feb 2018.

  • Benninghof, M., and C. Winter. 2019. Recent morphologic evolution of the German Wadden Sea. Nature Scientific Reports 9: 9293. https://doi.org/10.1038/s41598-019-45683-1.

    Article  CAS  Google Scholar 

  • Boon, J.D., and R.J. Byrne. 1981. On basin hypsometry and the morphodynamic response of coastal inlet systems. Marine Geology 40 (27–48): 1981.

    Google Scholar 

  • Bostock, J., B. McAndrew, R. Richards, K. Jauncey, T. Telfer, K. Lorenzen, D. Little, L. Ross, N. Handisyde, I. Gatward, and R. Corner. 2010. Aquaculture: global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2897–2912. https://doi.org/10.1098/rstb.2010.0170.

    Article  Google Scholar 

  • Callaghan, D.P., T.J. Bouma, P. Klassen, D. van der Wal, M.J.F. Stive, and P.M.J. Herman. 2010. Hydrodynamic forcing on salt-marsh development: distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science 89: 73–88. https://doi.org/10.1016/j.ecss.2010.05.013.

    Article  Google Scholar 

  • Castagno, K.A., A.M. Jiménez-Robles, J.P. Donnelly, P.L. Wiberg, M.S. Fenster, and S. Fagherazzi. 2018. Intense storms increase the stability of tidal bays. Geopshysical Research Letters 45 (11): 5491–5500. https://doi.org/10.1029/2018GL078208.

    Article  Google Scholar 

  • Chien, Y.H. 1992. Water quality requirements and management for marine shrimp culture. In 1992 Proceedings of the Special Session on Shrimp Farming, 144–156. Baton Rouge: World Aquaculture Society.

  • Coco, G., Z. Zhou, B. van Maanen, M. Olabarrieta, R. Tinoco, and I. Townend. 2013. Morphodynamics of tidal networks: advances and challenges. Marine Geology 346: 1–16. https://doi.org/10.1016/j.margeo.2013.08.005.

  • Dastgheib, A., J.A. Roelvink, and Z.B. Wang. 2008. Long-term process-based morphological modeling of the Marsdiep Tidal Basin. Marine Geology 256 (1): 90–100. https://doi.org/10.1016/j.margeo.2008.10.003.

    Article  Google Scholar 

  • Deltares. 2017. Delft3D Flow User Manual, Version: 3.15.52614. The Netherlands: Delft.

    Google Scholar 

  • Dissanayake, D.M.P.K., J.A. Roelvink, and M. van der Wegen. 2009. Modelled channel patterns in a schematized tidal inlet. Coastal Engineering 56 (11-12): 1069–1083. https://doi.org/10.1016/j.coastaleng.2009.08.008.

    Article  Google Scholar 

  • Donatelli, C., N.K. Ganju, S. Fagherazzi, and N. Leonardi. 2018a. Seagrass impact on sediment exchange between tidal flats and salt marsh, and the sediment budget of shallow bays. Geophysical Research Letters 45 (10): 4933–4943. https://doi.org/10.1029/2018GL078056.

    Article  Google Scholar 

  • Donatelli, C., N.K. Ganju, X. Zhang, S. Fagherazzi, and N. Leonardi. 2018b. Salt marsh loss affects tides and the sediment budget in shallow bays. Journal of Geophysical Research: Earth Surface 123 (10): 2647–2662. https://doi.org/10.1029/2018JF004617.

    Article  Google Scholar 

  • Dronkers, J. 1998. Morphodynamics of the Dutch Delta. In Physics of estuaries and coastal seas. 297–304, ed. J. Dronkers and M.B.A.M. Scheffers. Rotterdam: Balkema.

  • Engelund, F., and E. Hansen. 1967. A monograph on sediment transport in alluvial streams. Copenhagen: Teknisk Forlag.

    Google Scholar 

  • FAO. 2018. The State of World Fisheries and Aquaculture 2018 - meeting the sustainable development goals. Rome: Food and Agriculture Organization of the United Nations Licence: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  • Fast, A.W., and L.J. Lester, eds. 1992. Marine shrimp culture: principles and practices. Developments in aquaculture and fisheries science, 23. Amsterdam: Elsevier Science Publishers. 862 p.

  • Healy, M.G., and K.R. Hickey. 2002. Historic land reclamation in the intertidal wetlands of the Shannon Estuary, western Ireland. Journal of Coastal Research (Special Issue 36 - International Coastal Symposium (ICS 2002)): 365–373. https://doi.org/10.2112/1551-5036-36.sp1.365.

  • Jimenez, M., S. Castanedo, Z. Zhou, G. Coco, R. Medina, and I. Rodriguez-Iturbe. 2014a. Scaling properties of tidal networks. Water Resources Research 50 (6): 4585–4602. https://doi.org/10.1002/2013WR015006.

    Article  Google Scholar 

  • Jimenez, M., S. Castanedo, Z. Zhou, G. Coco, R. Medina, and I. Rodriguez-Iturbe. 2014b. On the sensitivity of tidal network characterization to power law estimation. Advances in Geosciences 39: 69–73. https://doi.org/10.5194/adgeo-39-69-2014.

    Article  Google Scholar 

  • Kjerfve, B. 1994. Coastal lagoon process. Amsterdam: Elsevier Oceanography Series.

  • Lazarus, E.D., M.A. Ellis, A.B. Murray, and D.M. Hall. 2016. An evolving research agenda for human–coastal systems. Geomorphology 256: 81–90. https://doi.org/10.1016/j.geomorph.2015.07.043.

    Article  Google Scholar 

  • Lesser, G.R., J.A. Roelvink, J.A.T.M. van Kester, and G.S. Stelling. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering 51: 883–915.

    Article  Google Scholar 

  • Luan, H.L., P.X. Ding, Z.B. Wang, and J.Z. Ge. 2017. Process-based morphodynamic modeling of the Yangtze estuary at a decadal timescale: controls on estuarine evolution and future trends. Geomorphology 290: 347–364. https://doi.org/10.1016/j.geomorph.2017.04.016.

    Article  Google Scholar 

  • van Maanen, B., G. Coco, and K.R. Bryan. 2011. A numerical model to simulate the formation and subsequent evolution of tidal channel networks. Australian Journal of Civil Engineering 9 (1): 61–72 https://hdl.handle.net/10289/7186. Accessed 11 Nov 2017.

  • van Maanen, B., G. Coco, K.R. Bryan, and C.T. Friedrichs. 2013a. Modeling the morphodynamic response of tidal embayments to sea-level rise. Ocean Dynamics 63 (11-22): 1249–1262. https://doi.org/10.1007/s10236-013-0649-6.

    Article  Google Scholar 

  • van Maanen, B., G. Coco, and K.R. Bryan. 2013b. Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments. Geomorphology 191: 23–34. https://doi.org/10.1016/j.geomorph.2013.02.023.

    Article  Google Scholar 

  • van Maanen, B., G. Coco, and K.R. Bryan. 2015. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471 (2180). https://doi.org/10.1098/rspa.2015.0115.

  • Marciano, R., Z.B. Wang, A. Hibma, H.J. de Vriend, and A. Defina. 2005. Modeling of channel patterns in short tidal basins. Journal of Geophysical Research: Earth Surface 10 (F1). https://doi.org/10.1029/2003JF000092.

  • Nnafie, A., T. van Oyen, B. de Maerschalck, M. van der Vegt, and M. van der Wegen. 2018. Estuarine channel evolution in response to closure of secondary basins: an observational and morphodynamic modeling study of the Western Scheldt Estuary. Journal of Geophysical Research: Earth Surface 123. https://doi.org/10.1002/2017JF004364.

  • Ottinger, M., K. Clauss, and C. Kuenzer. 2017. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote Sensing 9 (5): 440. https://doi.org/10.3390/rs9050440.

    Article  Google Scholar 

  • Primavera, J.H. 1994. Shrimp farming in the Asia-Pacific: environmental and trade issues and regional cooperation. Nautilus Institute Workshop on Trade and Environment in Asia-Pacific: Prospects for Regional Cooperation, 23–25 September 1994. Honolulu, Hawaii: East-West Center https://nautilus.org/trade-and-environment/shrimp-farming-in-the-asia-pacific-environmental-and-trade-issues-and-regional-cooperation-4/. Accessed 3 July 2019.

  • Roelvink, J.A. 2006. Coastal morphodynamic evolution techniques. Coastal Engineering 53 (2-3): 277–287. https://doi.org/10.1016/j.coastaleng.2005.10.015.

    Article  Google Scholar 

  • Roelvink, J.A., and A. Reniers. 2012. A guide to modeling coastal morphology. Advances in coastal and ocean engineering, 12. World Scientific: Publishing. https://doi.org/10.1142/7712.

    Book  Google Scholar 

  • Roversi, F. 2018. Analysis of the shrimp farming activity influence on hydro-morphological and water quality aspects of coastal water bodies: a case study in the Guaraíras Lagoon System, RN (PhD dissertation). Ocean engineering program, Federal University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil.

  • Roversi, F., A.C. Scudelari, M.F.A. Matos, V.E. Amaro, P.C.C. Rosman, and C.F. Neves. 2017. Alterações morfológicas e evolução da carcinicultura no Sistema Lagunar de Guaraíras - RN. In XVIII SBSR – Brazilian Symposium on Remote Sensing (Proceedings). INPE - National Institute for Space Research: Santos, SP, Brazil https://proceedings.galoa.com.br/sbsr/trabalhos/alteracoes-morfologicas-e-evolucao-da-carcinicultura-no-sistema-lagunar-de-guarairas-rn?lang=pt-br. Accessed 12 June 2018.

  • Santhanam, P., A.R. Thirunavukkarasu, and P. Perumal, eds. 2015. Advances in marine and brackishwater aquaculture, 2015. India: Springer.

    Google Scholar 

  • Schuerch, M., T. Spencer, S. Temmerman, M.L. Kirwan, C. Wolff, D. Lincke, C.J. McOwen, et al. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561 (7722): 231–234. https://doi.org/10.1038/s41586-018-0476-5.

    Article  CAS  Google Scholar 

  • Speer, P.E., D.G. Aubrey. 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems part II: theory. Estuarine, Coastal and Shelf Science (1985) 21:207-224. doi: https://doi.org/10.1016/0272-7714(85)90097-6.

  • Steinmetz, G. (2016). This mind-bending drone footage shows the scale of the world's largest shrimp farm. https://businessinsider.com/video-shows-scale-of-the-world-largest-shrimp-farm-2017-2. Accessed 1 February 2020.

  • Stickney, R.R., ed. 2000. Encyclopedia of aquaculture. New York: John Wiley & Sons, Inc..

    Google Scholar 

  • Tidwell, J., ed. 2012. Aquaculture production systems. New Delhi: John Wiley & Sons, Ltd..

  • Verdegem, M.C.J., and R.H. Bosma. 2009. Water withdrawal for brackish and inland aquaculture, and options to produce more fish in ponds with present water use. Water Policy 11 (1): 52–68. https://doi.org/10.2166/wp.2009.003.

    Article  Google Scholar 

  • van der Wal, D., K. Pye, and A. Neal. 2002. Long-term morphological change in the Ribble Estuary, northwest England. Marine Geology 189 (3–4): 249–266. https://doi.org/10.1016/S0025-3227(02)00476-0.

    Article  Google Scholar 

  • Wang, Z.B. 2018. Long term morphological development of the tidal inlet systems in the Dutch Wadden Sea. Rijkswaterstaat - Ministry of Infrastructure and Water Management - Government of the Netherlands. Deltares Report no. 1220339–006. 36p. Delft, The Netherlands. https://www.helpdeskwater.nl/@205195/long-term/. Accessed 01 Apr 2019.

  • van der Wegen, M., Z.B. Wang, H.H.G. Savenije, and J.A. Roelvink. 2008. Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. Journal of Geophysical Research: Earth Surface 113 (F3). https://doi.org/10.1029/2007JF000898.

  • van der Wegen, M., B.E. Jaffe, and J.A. Roelvink. 2011. Process-based, morphodynamic hindcast of decadal deposition patterns in San Pablo Bay, California, 1856–1887. Journal of Geophysical Research 116 (F2). https://doi.org/10.1029/2009JF001614.

  • White, P., M.J. Phillips, and M.C.M. Beveridge. 2013. Environmental impact, site selection and carrying capacity estimation for small-scale aquaculture in Asia. In Site selection and carrying capacities for inland and coastal aquaculture, ed. L.G. Ross, T.C. Telfer, L. Falconer, D. Soto, and J. Aguilar-Manjarrez, –Rome. FAO Fisheries and Aquaculture Proceedings No. 21.

  • Xie, D., Z. Wang, S. Gao, H.J. de Vriend. 2009. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Continental Shelf Research, 29(15):1757-1767. oi: https://doi.org/10.1016/j.csr.2009.03.009.

  • Zarzuelo, C., A. López-Ruiz, A. D’Alpaos, L. Carniello, and M. Ortega-Sánchez. 2018. Assessing the morphodynamic response of human-altered tidal embayments. Geomorphology 320 (127–141). https://doi.org/10.1016/j.geomorph.2018.08.014.

  • Zhao, J., L. Guo, Q. He, Z.B. Wang, D.S. van Maren, and X. Wang. 2018. An analysis on half century morphological changes in the Changjiang Estuary: spatial variability under natural processes and human intervention. Journal of Marine Systems 181: 25–36. https://doi.org/10.1016/j.jmarsys.2018.01.007.

    Article  Google Scholar 

  • Zhou, Z., G. Coco, M. van der Wegen, Z. Gong, C. Zhang, and I. Townend. 2015. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves. Continental Shelf Research 104: 76–91. https://doi.org/10.1016/j.csr.2015.05.010.

    Article  Google Scholar 

  • Zhou, Z., G. Coco, I. Towned, M. Olabarrieta, M. van der Wegen, Z. Gong, A. D’Alpaos, S. Gao, B.E. Jaffe, G. Gelfenbaum, Q. He, Y. Wang, S. Lanzoni, Z. Wang, H. Winterwerp, and C. Zhang. 2017. Is “Morphodynamic Equilibrium” an oxymoron? Earth Science Reviews 165: 257–267. https://doi.org/10.1016/j.earscirev.2016.12.002.

    Article  Google Scholar 

  • Zhou, Z., G. Coco, I. Townend, Z. Gong, Z. Wang, and C. Zhang. 2018. On the stability relationships between tidal asymmetry and morphologies of tidal basins and estuaries. Earth Surface Process and Landforms 43 (9): 1943–1959. https://doi.org/10.1002/esp.4366.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers and Associate Editor for providing detailed and constructive feedback.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Roversi.

Additional information

Communicated by David K. Ralston

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roversi, F., van Maanen, B., Colonna Rosman, P.C. et al. Numerical Modeling Evaluation of the Impacts of Shrimp Farming Operations on Long-term Coastal Lagoon Morphodynamics. Estuaries and Coasts 43, 1853–1872 (2020). https://doi.org/10.1007/s12237-020-00743-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00743-y

Keywords

Navigation