Skip to main content
Log in

Response surface methodology (RSM) for assessing the effects of pretreatment, feedstock, and enzyme complex association on cellulose hydrolysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The enzymatic hydrolysis of sugarcane bagasse cellulose (SBC) was performed after acid/peroxide-alkali (APA) pretreatment, soda/AQ pulping, and bleaching steps for producing glucose. Cellic® CTec3 (CT) and Celluclast®1.5L (CL) complexes were evaluated in both individual and mixed systems for observing their influence in cellulose conversion. Deconvolution of XRD patterns and SEM images proved the low crystallinity and high accessibility of SBC, thus being able to provide significantly higher glucose yield than the commercial cellulose with predominant Iβ polymorphism. The analysis of variance (ANOVA) and the response surface methodology (RSM), applied to a full factorial 24 design of experiments built for assessing the activity of CT and CL enzymes together in the hydrolytic system, were accurate in describing that the feedstock (SBC or commercial cellulose) and the treatment of cellulose are the factors with major effect on the saccharification efficiency (F = 744.12, p < 0.0001), thus predicting 53.71 g/L maximum glucose yield for the experimental conditions studied (near to the maximum yield reached, 55.77%) when using SBC, more than double the conversion reached for commercial cellulose, and showing the cooperative work of both complexes together for converting cellulose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou Z, Lei F, Li P, Jiang J (2018) Lignocellulosic biomass to biofuels and biochemicals: a comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol Bioeng 115:2683–2702. https://doi.org/10.1002/bit.26788

    Article  Google Scholar 

  2. Gallo JMR, Trapp MA (2017) The chemical conversion of biomass-derived saccharides: an overview. J Braz Chem Soc 28:1586–1607. https://doi.org/10.21577/0103-5053.20170009

    Article  Google Scholar 

  3. Meléndez-Hernández PA, Hernández-Beltrán JU, Hernández-Guzmán A, Morales-Rodríguez R, Torres-Guzmán JC, Hernández-Escoto H (2019) Comparative of alkaline hydrogen peroxide pretreatment using NaOH and Ca(OH)2 and their effects on enzymatic hydrolysis and fermentation steps. Biomass Convers Bior. https://doi.org/10.1007/s13399-019-00574-3

  4. Hashmi M, Shah AA, Hameed A, Ragauskas AJ (2017) Enhanced production of bioethanol by fermentation of autohydrolyzed and C4mimOAc-treated sugarcane bagasse employing various yeast strains. Energies 10:1–7. https://doi.org/10.3390/en10081207

    Article  Google Scholar 

  5. Nakasone K, Kobayashi T (2016) Effect of pre-treatment of sugarcane bagasse on the cellulose solution and application for the cellulose hydrogel films. Biotechnol Bioeng 27:973–980. https://doi.org/10.1002/pat.3757

    Article  Google Scholar 

  6. Centi G, Lanzafame P, Perathoner S (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167:14–30. https://doi.org/10.1016/j.cattod.2010.10.099

    Article  Google Scholar 

  7. Kim S, Kim CH (2013) Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renew Energy 54:150–155. https://doi.org/10.1016/j.renene.2012.08.032

    Article  Google Scholar 

  8. Yu Z, Jameel H, Chang H-M, Philips R, Park S (2011) Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnol Bioeng 109:1131–1139. https://doi.org/10.1002/bit.24386

    Article  Google Scholar 

  9. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038

    Article  Google Scholar 

  10. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56:174–187. https://doi.org/10.17113/ftb.56.02.18.5428

    Article  Google Scholar 

  11. Yan Y, Zhang C, Lin Q, Wang X, Cheng B, Li H, Ren J (2018) Microwave-assisted oxalic acid pretreatment for the enhancing of enzyme hydrolysis in the production of xylose and arabinose from bagasse. Molecules 23:1–13. https://doi.org/10.3390/molecules23040862

    Article  Google Scholar 

  12. Moura HOMA, Campos LMA, da Silva VL, de Andrade JCF, de Assumpção SMN, Pontes LAM, de Carvalho LS (2018) Investigating acid/peroxide-alkali pretreatment of sugarcane bagasse to isolate high accessibility cellulose applied in acetylation reactions. Cellulose 25:5669–5685. https://doi.org/10.1007/s10570-018-1991-0

    Article  Google Scholar 

  13. Macrelli S, Galbe M, Wallberg O (2014) Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnol Bioeng 7:1–16. https://doi.org/10.1186/1754-6834-7-26

    Article  Google Scholar 

  14. Hernández-Beltrán JU, Fontalvo J, Hernández-Escoto H (2020) Fed-batch enzymatic hydrolysis of plantain pseudostem to fermentable sugars production and the impact of particle size at high solids loadings. Biomass Convers Bior. https://doi.org/10.1007/s13399-020-00669-2

  15. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  16. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 59:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  17. Rabelo SC, Andrade RR, Maciel Filho R, Costa AC (2014) Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel 136:349–357. https://doi.org/10.1016/j.fuel.2014.07.033

    Article  Google Scholar 

  18. de Assumpção SMN, Pontes LAM, de Carvalho LS, Campos LMA, de Andrade JCF, da Silva EG (2016) Pré-tratamento combinado H2SO4/H2O2/NaOH para obtenção das frações lignocelulósicas do bagaço da cana-de-açúcar. Rev Virt Quím 8:803–822. https://doi.org/10.5935/1984-6835.20160059

    Article  Google Scholar 

  19. Mesa L, González E, Cara C, Ruiz E, Castro E, Mussatto SI (2010) An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J Chem Technol Biotechnol 85:1092–1098. https://doi.org/10.1002/jctb.2404

    Article  Google Scholar 

  20. Candido RG, Mori NR, Gonçalves AR (2019) Sugarcane straw as feedstock for 2G ethanol: evaluation of pretreatmentsand enzymatic hydrolysis. Ind Crop Prod 142:111845. https://doi.org/10.1016/j.indcrop.2019.111845

    Article  Google Scholar 

  21. Nielsen F, Galbe M, Zacchi G, Wallberg O (2019) The effect of mixed agricultural feedstocks on steam pretreatment, enzymatic hydrolysis, and cofermentation in the lignocellulose-to-ethanol process. Biomas Conv Bioref. https://doi.org/10.1007/s13399-019-00454-w

  22. dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2018) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37:518–531. https://doi.org/10.1016/j.tibtech.2018.10.010

    Article  Google Scholar 

  23. Binod P, Gnansounou E, Sindhu R, Pandey A (2019) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325. https://doi.org/10.1016/j.biteb.2018.06.005

    Article  Google Scholar 

  24. Li H, Chen X, Xiong L, Luo M, Chen X, Wang C, Huang C, Chen X (2019) Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresour Technol 275:345–351. https://doi.org/10.1016/j.biortech.2018.12.063

    Article  Google Scholar 

  25. Sluiter A, Hame B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure. NREL 1617:1–16

    Google Scholar 

  26. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Bioeng 3:1–10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  27. Scherrer P (1918) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften 2:98–100. https://doi.org/10.1007/978-3-662-33915-2_7

  28. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition an detoxification. Bioresour Technol 74:17–24. https://doi.org/10.1016/S0960-8524(99)00160-1

    Article  Google Scholar 

  29. Rezende CA, de Lima M, Maziero P, de Azevedo E, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Bioeng 54(4):1–18 http://www.biotechnologyforbiofuels.com/content/4/1/54

    Google Scholar 

  30. Singh R, Tiwari S, Srivastava M, Shukla A (2014) Experimental study on the performance of microwave assisted hydrogen peroxide (H2O2) pretreatment of rice straw. Agric Eng Int CIGR J 16:173–181 http://www.cigrjournal.org/index.php/Ejounral/article/view/2633

    Google Scholar 

  31. da Cruz AC, da Silva MC, Ribeiro SD, Filho GR, de Assunção RMN, Cerqueira DA (2011) Utilização do acetato de celulose produzido a partir da celulose extraída do caroço de manga como matriz para produção de sistemas microparticulados. Quím Nova 34:385–389. https://doi.org/10.1590/S0100-40422011000300004

    Article  Google Scholar 

  32. Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330. https://doi.org/10.1016/j.fbp.2014.04.001

    Article  Google Scholar 

  33. Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromology 12:933–941. https://doi.org/10.1021/bm101240zf

    Article  Google Scholar 

  34. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  35. Horikawa Y (2017) Assessment of cellulose structural variety from different origins using near infrared spectroscopy. Cellulose 24:5313–5325. https://doi.org/10.1007/s10570-017-1518-0

    Article  Google Scholar 

  36. Barud HS, Araújo AM Jr, Santos DB, Assuncão RMN, Meireles CS, Cerqueira DA, Rodrigues Filho G, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69. https://doi.org/10.1016/j.tca.2008.02.009

    Article  Google Scholar 

  37. Akinwande MO, Dikko HG, Samson A (2015) Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open J Stat 5:754–767. https://doi.org/10.4236/ojs.2015.57075

    Article  Google Scholar 

  38. Manasa P, Saroj P, Korrapati N (2018) Ultrasound-assisted alkaline pretreatment to intensify enzymatic saccharification of Crotalaria juncea using a statistical method. Biomass Convers Bior 8:659–668. https://doi.org/10.1007/s13399-018-0324-8

  39. Rambo DF, Biegelmeyer R, Toson NSB, Dresch RR, Moreno PRH, Henriques AT (2019) Box–Behnken experimental design for extraction optimization of alkaloids from Erythrina verna Vell. trunk barks and LC method validation. Ind Crop Prod 133:250–258. https://doi.org/10.1016/j.indcrop.2019.03.030

    Article  Google Scholar 

  40. Fockink DH, Andreaus J, Ramos LP, Lukasik RM (2020) Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: a case study using green solvents. Renew Energy 145:490–499. https://doi.org/10.1016/j.renene.2019.06.042

    Article  Google Scholar 

  41. Seifollahi M, Amiri H (2019) Enzymatic post-hydrolysis of water-soluble cellulose oligomers released by chemical hydrolysis for cellulosic butanol production. Cellulose 26:4479–4494. https://doi.org/10.1007/s10570-019-02397-x

    Article  Google Scholar 

  42. Kaschuk JJ, Lacerda TM, Frollini E (2019) Investigating effects of high cellulase concentration on the enzymatic hydrolysis of the sisal cellulosic pulp. Int J Biol Macromol 138:919–926. https://doi.org/10.1016/j.ijbiomac.2019.07.173

    Article  Google Scholar 

  43. Cornejo A, Alegria-Dallo I, García-Yoldi I, Sarobe I, Sánchez D, Otazu E, Funcia I, Gil MJ, Martínez-Merino V (2019) Pretreatment and enzymatic hydrolysis for the efficient production of glucose and furfural from wheat straw, pine and poplar chips. Bioresour Technol 288:121583. https://doi.org/10.1016/j.biortech.2019.121583

    Article  Google Scholar 

  44. Rodrigues AC, Haven MØ, Lindedam J, Felby C, Gama M (2015) Celluclast and Cellic® CTec2: saccharification/fermentation of wheat straw, solid–liquid partition and potential of enzyme recycling by alkaline washing. Enzym Microb Technol 79:70–77. https://doi.org/10.1016/j.enzmictec.2015.06.019

    Article  Google Scholar 

  45. Lu M, Li J, Han L, Xiao W (2019) An aggregated understanding of cellulase adsorption and hydrolysis for ball-milled cellulose. Bioresour Technol 273:1–7. https://doi.org/10.1016/j.biortech.2018.10.037

    Article  Google Scholar 

  46. Malgas S, Thoresen M, Van Dyk JS, Pletschk BI (2017) Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Enzym Microb Technol 103:1–11. https://doi.org/10.1016/j.enzmictec.2017.04.007

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by the Post-Graduate Programs PPGE/UNIFACS, PPGQ/UFRN, PPEQ/UFBA, and PPGEQ/UFSCar.

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – Brazil) - Finance Code 001 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ – Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leila M. A. Campos or Luciene S. de Carvalho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 184 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, L.M.A., Moura, H.O.M.A., Cruz, A.J.G. et al. Response surface methodology (RSM) for assessing the effects of pretreatment, feedstock, and enzyme complex association on cellulose hydrolysis. Biomass Conv. Bioref. 12, 2811–2822 (2022). https://doi.org/10.1007/s13399-020-00756-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00756-4

Keywords

Navigation