Skip to main content
Log in

Warfarin Pharmacogenetics: Single-nucleotide Polymorphism Detection using CMOS Photosensor-based Real-time PCR

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Warfarin is a drug associated with blood clotting. As the side effects of this drug are fatal, it is important to adjust its dosage for each individual. In particular, DNA analysis of patients is necessary because the effect of the drug varies greatly depending on the genotype of the individual. Real-time PCR technology is usually used for DNA analysis. This technology requires expensive equipment, large space, and long experimental time. To solve these problems, we used a PCR module based on a CMOS photosensor. There are a heater circuit for thermal control on the its back side, and well-like structure on the surface, enabling location based multiplex PCR. We developed primers and probes to detect warfarin-related SNPs, and integrated with the PCR module. We tested the commercial Real-time PCR systems and our PCR modules. Based on the results, we confirmed that the level of performance of our system was similar to that of the commercial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ginsburg, G.S. & Willard, H.F. Genomic and personalized medicine: foundations and applications. Transl. Res.154, 277–287, (2009).

    Article  Google Scholar 

  2. Bell, R.G., Sadowski, J.A. & Matschiner, J.T. Mechanism of action of warfarin. Warfarin and metabolism of vitamin K1. Biochemistry11, 1959–1961, (1972).

    Article  CAS  Google Scholar 

  3. Heimark, L.D., Gibaldi, M., Trager, W.F., O’Reilly, R.A. & Goulart, D.A. The mechanism of the warfarin-rifampin drug interaction in humans. Clin. Pharmacol. Ther.42, 388–394, (1987).

    Article  CAS  Google Scholar 

  4. Morgan, C.L., McEwan, P., Tukiendorf, A., Robinson, P.A., Clemens, A. & Plumb, J.M. Warfarin treatment in patients with atrial fibrillation: observing outcomes associated with varying levels of INR control. Thromb. Res.124, 37–41, (2009).

    Article  CAS  Google Scholar 

  5. Johnson, J.A., Gong, L., Whirl-Carrillo, M., Gage, B. F., Scott, S.A., Stein, C.M., Anderson, J.L., Kimmel, S.E., Lee, M.T.M., Pirmohamed, M., Wadelius, M., Klein, T.E. & Altman, R.B. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther.90, 625–629, (2011).

    Article  CAS  Google Scholar 

  6. Rettie, A.E., Wienkers, L.C., Gonzalez, F.J., Trager, W.F. & Korzekwa, K.R. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenet. Genomics4, 39–42, (1994).

    Article  CAS  Google Scholar 

  7. Furuya, H., Fernandez-Salguero, P., Gregory, W., Taber, H., Steward, A., Gonzalez, F.J. & Idle, J.R. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenet. Genomics5, 389–392, (1995).

    Article  CAS  Google Scholar 

  8. Yin, T. & Miyata, T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1—Rationale and perspectives. Thromb. Res.120, 1–10, (2007).

    Article  CAS  Google Scholar 

  9. Aithal, G.P., Day, C.P., Kesteven, P.J.L. & Daly, A.K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. The Lancet353, 717–719, (1999).

    Article  CAS  Google Scholar 

  10. Rieder, M.J., Reiner, A.P., Gage, B.F., Nickerson, D.A., Eby, C.S., McLeod, H.L., Blough, D.K., Thummel, K.E., Veenstra, D.L. & Rettie, A.E. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med.352, 2285–2293, (2005).

    Article  CAS  Google Scholar 

  11. Yuan, H.-Y., Chen, J.-J., Lee, M.T.M., Wung, J.-C., Chen, Y.-F., Charng, M.-J., Lu, M.-J., Hung, C.-R., Wei, C.-Y., Chen, C.-H., Wu, J.-Y. & Chen, Y.-T. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum. Mol. Genet.14, 1745–1751, (2005).

    Article  CAS  Google Scholar 

  12. Rost, S., Fregin, A., Ivaskevicius, V., Conzelmann, E., Hörtnagel, K., Pelz, H.-J., Lappegard, K., Seifried, E., Scharrer, I., Tuddenham, E.G.D., Müller, C.R., Strom, T.M. & Oldenburg, J. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature427, 537–541, (2004).

    Article  CAS  Google Scholar 

  13. Takeuchi, F., McGinnis, R., Bourgeois, S., Barnes, C., Eriksson, N., Soranzo, N., Whittaker, P., Ranganath, V., Kumanduri, V., McLaren, W., Holm, L., Lindh, J., Rane, A., Wadelius, M. & Deloukas, P. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet.5, e1000433, (2009).

    Article  Google Scholar 

  14. Makler, M.T., Palmer, C.J. & Ager, A.L. A review of practical techniques for the diagnosis of malaria. Ann. Trop. Med. Parasitol.92, 419–434, (1998).

    Article  CAS  Google Scholar 

  15. DeFrancesco, L. Product review: Real-time PCR takes center stage. Anal. Chem.75, 175–179, (2003).

    Article  Google Scholar 

  16. Norian, H., Field, R.M., Kymissis, I. & Shepard, K.L. An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip14, 4076–4084, (2014).

    Article  CAS  Google Scholar 

  17. Lee, B.S. & Lee, D.Y. US patent applications. 0196206A1 (2010).

  18. Wang, T., Devadhasan, J.P., Lee, D.Y. & Kim, S. Real-time DNA amplification and detection system based on a CMOS image sensor. Anal. Sci.32, 653–658, (2016).

    Article  CAS  Google Scholar 

  19. Devadhasan, J.P. & Kim, S. CMOS image sensor based HIV diagnosis: a smart system for point-of-care approach. BioChip J.7, 258–266, (2013).

    Article  CAS  Google Scholar 

  20. Zhang, C. & Xing, D. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res.35, 4223–4237, (2007).

    Article  CAS  Google Scholar 

  21. Lee, J.H., Park, Y., Choi, J.R., Lee, E.K. & Kim, H.-S. Comparisons of three automated systems for genomic DNA extraction in a clinical diagnostic laboratory. Yonsei Med. J.51, 104–110, (2010).

    Article  CAS  Google Scholar 

  22. Mercier, B., Gaucher, C., Feugeas, O. & Mazurier, C. Direct PCR from whole blood, without DNA extraction. Nucleic Acids Res.18, 5908, (1990).

    Article  CAS  Google Scholar 

  23. McCusker, J., Dawson, M.T., Noone, D., Gannon, F. & Smith, T. Improved method for direct PCR amplification from whole blood. Nucleic Acids Res.20, 6747, (1992).

    Article  CAS  Google Scholar 

  24. Dean, L. Warfarin therapy and the genotypes CYP2C9 and VKORC1. Medical Genetics Summaries2, 257–263, (2012).

    Google Scholar 

  25. Ballantyne, K.N., van Oorschot, R.A.H. & Mitchell, R.J. Locked nucleic acids in PCR primers increase sensitivity and performance. Genomics91, 301–305, (2008).

    Article  CAS  Google Scholar 

  26. Forootan, A., Sjöback, R., Björkman, J., Sjögreen, B., Linz, L. & Kubista, M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif.12, 1–6, (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the R&D Program for Nano-Convergence Foundation(http://www.nanotech2020.org) funded by the Ministry of Science and ICT(MSIT, Korea) & the Ministry of Trade, Industry and Energy (MOTIE, Korea) [NTIS-9991006275], and the Gachon University research fund of 2019 (GCU-2019-0304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyo Kim.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S., Son, K., Lee, D. et al. Warfarin Pharmacogenetics: Single-nucleotide Polymorphism Detection using CMOS Photosensor-based Real-time PCR. BioChip J 14, 204–210 (2020). https://doi.org/10.1007/s13206-020-4209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4209-0

Keywords

Navigation