Skip to main content
Log in

A family of linear stable equilibria in the Sun-Earth-Sail problem

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The collinear libration point of the Sun-Earth Circular Restricted Three-Body Problem (CR3BP), \(L_{3}\) is located opposite to the Earth with respect to the Sun. Whereas several space missions have been launched to the other two collinear equilibrium points, i.e., \(L_{1}\) and \(L_{2}\), the region around \(L_{3}\) is so far unexploited essentially because of the severe communication limitations caused by Sun’s blocking location.

By using an adequate size, location and attitude of a solar sail, the equilibrium point can be displaced from its original location to allow direct communication between the satellite and Earth. This paper presents several families of artificial equilibria located on the semi-space which is permanently opposite to Earth in relation to the Sun, but which allows direct communication with Earth. We present a family of such equilibria which are linearly stable and therefore very useful for space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aliasi, G., Mengali, G., Quarta, A.: Artificial equilibrium points for the generalized sail in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 110, 343–368 (2011). https://doi.org/10.1007/s10569-011-9366-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • de Almeida, A.K. Jr., Prado, A.F.B.A., Sanchez, D.M., Yokoyama, T.: Searching for artificial equilibrium points to place satellites “above and below” \(L_{3}\) in the Sun-Earth system. Rev. Mex. Astron. Astrofís. 53, 349–359 (2017)

    ADS  Google Scholar 

  • Ammar, M.K.: The effect of solar radiation pressure on the Lagrangian points in the elliptic restricted three-body problem. Astrophys. Space Sci. 313, 393 (2008)

    Article  ADS  Google Scholar 

  • Baig, S., McInnes, C.R.: Artificial three-body equilibria for hybrid low-thrust propulsion. J. Guid. Control Dyn. 31(6), 1644–1654 (2008). https://doi.org/10.2514/1.36125

    Article  ADS  Google Scholar 

  • Baoyin, H.X., McInnes, C.R.: Solar sail orbits at artificial sun-Earth Lagrange points. J. Guid. Control Dyn. 28(6), 1328–1331 (2005)

    Article  ADS  Google Scholar 

  • Baoyin, H., McInnes, C.R.: Solar Sail Halo orbits at the Sun-Earth artificial L-1 point. Celest. Mech. Dyn. Astron. 94(2), 155–171 (2006a). https://doi.org/10.1007/s10569-005-4626-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baoyin, H.X., McInnes, C.R.: Trajectories to and from the Lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006b)

    Article  ADS  Google Scholar 

  • Baoyin, H.X., McInnes, C.R.: Solar sail equilibria in the elliptical restricted three-body problem. J. Guid. Control Dyn. 29(3), 538–543 (2006c)

    Article  ADS  Google Scholar 

  • Barrabes, E., Olle, M.: Invariant manifolds of \(L_{3}\) and horseshoe motion in the restricted three-body problem. Nonlinearity 19, 2065–2090 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Bombardelli, C., Pelaez, J.: On the stability of artificial equilibrium points in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 109(1), 13–26 (2011). https://doi.org/10.1007/s10569-010-9317-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bookless, J., McInnes, C.R.: Control of Lagrange point orbits using solar sail propulsion. Acta Astronaut. 62, 159–176 (2008). https://doi.org/10.1016/j.actaastro.2006.12.051

    Article  ADS  Google Scholar 

  • Gomez, G., Jorba, A., Masdemont, J., Simo, C.: Study of the transfer from the Earth to a halo orbit around the equilibrium point L1. Celest. Mech. Dyn. Astron. 56(4), 541–562 (1993)

    Article  ADS  Google Scholar 

  • Gomez, G., Masdemont, J., Simo, C.: Quasi-halo orbits associated with libration points. J. Astronaut. Sci. 46, 135–176 (1998)

    MathSciNet  Google Scholar 

  • Hou, X., Tang, J., Liu, L.: Transfer to the Collinear Libration Point L3 in the Sun–Earth+Moon System. Nasa Technical Report 20080012700 (2007)

  • Janhunen, P., Sandroos, A.: Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. 25, 755–767 (2007)

    Article  ADS  Google Scholar 

  • Jorba, A., Masdemont, J.: Dynamics in the centre manifold of the collinear points of the restricted three body problem. Physica D 132, 189–213 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transition in celestial mechanics. Chaos 10(2), 427–469 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Kunitsyn, A.L., Perezhogin, A.A.: On the stability of triangular libration points of the photogravitational restricted circular three-body problem. Celest. Mech. 18, 395–408 (1978). https://doi.org/10.1007/BF01230352

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Li, J., Post, M.A., Vukovich, G.: Orbit and attitude stability criteria of solar sail on the displaced orbit. AAS 15, 604 (2015)

    Google Scholar 

  • Llibre, J., Martinez, R., Simo, C.: Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L2 in the restricted three-body problem. J. Differ. Equ. 48, 104–156 (1985)

    Article  ADS  Google Scholar 

  • Macdonald, M., Hughes, G.W., McInnes, C.R., Lyngvi, A., Falkner, P., Atzei, A.: Solar polar orbiter: a solar sail technology reference study. J. Spacecr. Rockets 43(5), 960–972 (2006). https://doi.org/10.2514/1.16408

    Article  ADS  Google Scholar 

  • McInnes, C.R.: Artificial Lagrange points for a partially reflecting flat solar sail. J. Guid. Control Dyn. 22(1), 185–187 (1999a). https://doi.org/10.2514/2.7627

    Article  ADS  Google Scholar 

  • McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer-Praxis Series in Space Science and Technology, pp. 38–40. Springer, Berlin (1999b). ISBN 185233102X

    Book  Google Scholar 

  • McInnes, C.R.: Space-based geoengineering: challenges and requirements. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 224(3), 571–580 (2010)

    Article  Google Scholar 

  • McInnes, C.R., McDonald, A.J.C., Simmons, J.F.L., MacDonald, E.W.: Solar sail parking in restricted threebody systems. J. Guid. Control Dyn. 17(2), 399–406 (1994). https://doi.org/10.2514/3.21211

    Article  ADS  MATH  Google Scholar 

  • Mengali, G., Quarta, A.A.: Non-Keplerian orbits for electric sails. Celest. Mech. Dyn. Astron. 105, 179–195 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Morimoto, M.Y., Yamakawa, H., Uesugi, K.: Artificial equilibrium points in the low-thrust restricted three-body problem. J. Guid. Control Dyn. 30(5), 1563–1567 (2007). https://doi.org/10.2514/1.26771

    Article  ADS  Google Scholar 

  • Perezhogin, A.A.: Stability of the sixth and seventh libration points in the photogravitational restricted circular three-body problem. Sov. Astron. Lett. 2, 174–175 (1976)

    ADS  Google Scholar 

  • Perezhogin, A.A., Tureshbaev, A.T.: Stability of coplanar libration points in the photo gravitational restricted three-body problem. Sov. Astron. Lett. ASTR 33(4), 445–448 (1989)

    ADS  MATH  Google Scholar 

  • Prado, A.F.B.A., Broucke, R.A.: Transfer orbits in the restricted problem. J. Guid. Control Dyn. 18(3), 593–598 (1995)

    Article  ADS  Google Scholar 

  • Ranjana, K., Kumar, V.: On the artificial equilibrium points in a generalized restricted problem of three bodies. Int. J. Astron. Astrophys. 3, 508–516 (2013)

    Article  Google Scholar 

  • Salazar, F.J.T., McInnes, C.R., Winter, O.C.: Intervening in Earth’s climate system through space-based solar reflectors. Adv. Space Res. 58, 17–29 (2016)

    Article  ADS  Google Scholar 

  • Schuerman, D.W.: The restricted three-body problem including radiation pressure. Astrophys. J. 238(1), 337–342 (1980). https://doi.org/10.1086/157989

    Article  ADS  MathSciNet  Google Scholar 

  • Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35(2), 145–187 (1985). https://doi.org/10.1007/BF01227667

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sturm, J.: Mémoire sur la résolution des équations numériques. Bull. Sci. de Frussac 11, 419–425 (1829)

    Google Scholar 

  • Symon, K.R.: Mechanics. Campus Ltda, Rio de Janeiro (1986)

    MATH  Google Scholar 

  • Tantardini, M., Fantino, E., Ren, Y.: Spacecraft trajectories to the L3 point of the Sun–Earth three-body problem. Celest. Mech. Dyn. Astron. 108, 215–232 (2010)

    Article  ADS  Google Scholar 

  • Waters, T.J., McInnes, C.R.: Solar sail dynamics in the three-body problem: homoclinic paths of points and orbits. Int. J. Non-Linear Mech. 43(6), 490–496 (2008). https://doi.org/10.1016/j.ijnonlinmec.2008.01.001

    Article  ADS  MATH  Google Scholar 

  • Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton, NJ (1941)

    MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the support of the Brazilian National Council for Scientific and Technological Developement-(CNPq): Pos-doctoral grants (Process number 101477/2019-8) and also the logistical support of São Paulo State University (UNESP-Rio Claro) for the development of the above mentioned pos-doctoral ternure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Marchesin.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchesin, M., Yokoyama, T. A family of linear stable equilibria in the Sun-Earth-Sail problem. Astrophys Space Sci 365, 85 (2020). https://doi.org/10.1007/s10509-020-03802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03802-9

Keywords

Navigation