Skip to main content
Log in

A Model of the Dust Envelope of the Carbon Mira Star V CrB from Photometry, Infrared Spectroscopy, and Speckle Polarimetry

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

\(UBVJHKLM\) photometry for the carbon Mira star V CrB are presented. The infrared observations were carried out in the time interval 1989–2018, while the \(U\), \(B\), and \(V\) data were obtained in 2001–2014. The light and color curves are analyzed. The pulsation period of V CrB has been found to be \(355\overset{\textrm{d}}{.}2\) in the infrared \(JHKLM\) bands and \(352^{\textrm{d}}\) for the optical \(BV\) band. In the \(JHK\) bands, apart from periodic pulsations, there are distinct sinusoidal variations in the average brightness level with a characteristic period of \({\sim}8300\) days. Color–magnitude relationships have been revealed for the infrared and optical bands. The phase curves exhibit the wavelength dependence of the brightness variability amplitude. The light curves for various bands and colors are discussed. We have constructed the model of a spherically symmetric circumstellar dust envelope that allows the observed spectral energy distribution at both maximum and minimum light to be reproduced equally well (within the model assumptions) and is consistent with the observations of V CrB by differential speckle polarimetry. The model is characterized by the following parameters: the optical depth is \(\tau_{K}=0.33\), the inner and outer radii of the envelope are 8 and 40 000 AU, respectively. The envelope contains spherical carbon dust grains (\(3/4\) by mass) and silicon carbide dust grains. Dust grains with a radius of 0.5 \(\mu\)m account for \(90\%\) of the envelope mass. The remaining \(10\%\) of the mass is accounted for by finer dust with a grain radius of 0.1 \(\mu\)m. Based on the observational data, we have estimated the bolometric flux from V CrB: \(2.6\times 10^{-7}\) and \(5.1\times 10^{-7}\) erg cm\({}^{-2}\) s\({}^{-1}\) at minimum and maximum light, respectively. The effective temperature of the star is \(T_{\textrm{max}}=3000\) K at maximum light and \(T_{\textrm{min}}=2400\) K at minimum light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. W. Aoki, T. Tsuji, and K. Ohnaka, Astron. Astrophys. 350, 945 (1999).

    ADS  Google Scholar 

  2. B. Aringer, L. Girardi, W. Nowotny, P. Marigo, and M. T. Lederer, Astron. Astrophys. 503, 913 (2009).

    Article  ADS  Google Scholar 

  3. H. Avenhaus, S. P. Quanz, M. R. Meyer, S. D. Brittain, D. Sean, J. S. Carr, and J. R. Najita, Astrophys, J. 790, 56 (2014).

  4. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae, Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  5. J. Bergeat, A. Knapik, and B. Rutily, Astron. Astrophys. 369, 178 (2001).

    Article  ADS  Google Scholar 

  6. J. E. Bjorkman, and K. Wood, Astrophys. J. 554, 615 (2001).

    Article  ADS  Google Scholar 

  7. H. Canovas, F. Menard, J. de Boer, C. Pinte, H. Avenhaus, and M. R. Schreiber, Astron. Astrophys. 582, 7C (2015).

    Article  ADS  Google Scholar 

  8. C. P. Dullemond, A. Juhasz, A. Pohl, F. Sereshti, R. Shetty, T. Peters, B. Commercon, and M. Flock, Astrophys. Source Code Lib., 1202.015 (2012).

  9. V. F. Esipov, E. A. Kolotilov, G. V. Komissarova, V. I. Shenavrin, T. N. Tarasova, A. M. Tatarnikov, and A. A. Tatarnikova, Balt. Astron. 21, 47 (2012).

    ADS  Google Scholar 

  10. M. A. T. Groenewegen, P. A. Whitelock, C. H. Smith, and F. Kerschbaum, Mon. Not. R. Astron. Soc. 293, 18 (1998).

    Article  ADS  Google Scholar 

  11. H. H. Guetter and A. V. Hewitt, Publ. Astron. Soc. Pacif. 96, 441 (1984).

    Article  ADS  Google Scholar 

  12. X. Haubois, B. Norris, P. G. Tuthill, C. Pinte, P. Kervella, J. H. Girard, N. M. Kostogryz, S. V. Berdyugina et al., Astron. Astrophys. 628, A101 (2019).

    Article  ADS  Google Scholar 

  13. K.-H. Hofmann, U. Beckmann, T. Blocker, V. Coude du Foresto, M. G. Lacasse, R. Millan-Gabet, S. Morel, P. Pras, et al., Proc. SPIE 4006, 688 (2000).

    Article  ADS  Google Scholar 

  14. M. F. Kessler, J. A. Steinz, and M. E. Anderegg, Astron. Astrophys. 315, L27 (1996).

    ADS  Google Scholar 

  15. S. Kilston, Publ. Astron. Soc. Pacif. 87, 189 (1975).

    Article  ADS  Google Scholar 

  16. E. A. Kolotilov, U. Munari, A. A. Popova, A. M. Tatarnikov, V. I. Shenavrin, and B. F. Yudin, Astron. Lett. 24, 451 (1998).

    ADS  Google Scholar 

  17. Y. Libert, E. Gerard, C. Thum, J. M. Winters, L. D. Matthews, and T. le Bertre, Astron. Astrophys. 510, A14 (2010).

    Article  ADS  Google Scholar 

  18. G. W. Lockwood and R. F. Wing, Astrophys. J. 169, 63 (1971).

    Article  ADS  Google Scholar 

  19. V. M. Lyutyi, Soobshch. GAISh, No. 172, 30 (1971).

    Google Scholar 

  20. J. W. Menzies, M. W. Feast, P. A. Whitelock, Mon. Not. R. Astron. Soc. 369, 783 (2006).

    Article  ADS  Google Scholar 

  21. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  22. A. E. Nadzhip, V. I. Shenavrin, and V. G. Tikhonov, Tr. GAISh 58, 119 (1986).

    Google Scholar 

  23. A. Nadzhip, A. M. Tatarnikov, V. I. Shenavrin, G. Weigelt, and B. F. Yudin, Astron. Lett. 27, 324 (2001).

    Article  ADS  Google Scholar 

  24. B. R. M. Norris, P. G. Tuthill, M. J. M. J. Ireland, S. Lacour, A. A. Zijlstra, F. Lykouet, T. M. Evans, P. Stewart, et al., Nature (London, U.K.) 484, 220 (2012).

    Article  ADS  Google Scholar 

  25. W. Nowotny, B. Aringer, S. Hofner, and M. T. Lederer, Astron. Astrophys. 529, 19 (2011).

    Article  Google Scholar 

  26. B. Pegourie, Astron. Astrophys. 194, 335 (1988).

    ADS  Google Scholar 

  27. S. D. Price, B. J. Smith, T. A. Kuchar, D. R. Mizuno, and K. E. Kraemer, Astrophys. J. Suppl. Ser. 190, 203 (2010).

    Article  ADS  Google Scholar 

  28. B. S. Safonov, P. A. Lysenko, and A. V. Dodin, Astron. Lett. 43, 344 (2017).

    Article  ADS  Google Scholar 

  29. B. Safonov, P. Lysenko, M. Goliguzova, and D. Cheryasov, Mon. Not. R. Astron. Soc. 484, 5129 (2019).

    Article  ADS  Google Scholar 

  30. N. N. Samus, E. V. Kazarovets, O. V. Durlevich, N. N. Kireeva, and E. N. Pastukhova, Astron. Rep. 61, 80 (2017)

    Article  ADS  Google Scholar 

  31. V. I. Shenavrin, O. G. Taranova, and A. E. Nadzhip, Astron. Rep. 55, 31 (2011).

    Article  ADS  Google Scholar 

  32. V. Straizys, Multicolor Stellar Photometry (Pachart, Tucson, 1992).

    Google Scholar 

  33. K. W. Suh, Mon. Not. R. Astron. Soc. 315, 740 (2000).

    Article  ADS  Google Scholar 

  34. O. G. Taranova and V. I. Shenavrin, Astron. Lett. 30, 549 (2004).

    Article  ADS  Google Scholar 

  35. R. Treffers and M. Cohen, Astrophys. J. 188, 545 (1974).

    Article  ADS  Google Scholar 

  36. G. Weigelt and B. F. Yudin, Astron. Rep. 45, 510 (2001).

    Article  ADS  Google Scholar 

  37. P. A. Whitelock, M. W. Feast, and F. van Leeuwen, Mon. Not. R. Astron. Soc. 386, 313 (2008).

    Article  ADS  Google Scholar 

  38. V. Zubko, E. Dwek, and R. G. Arendt, Astrophys. J. Suppl. Ser. 152, 211 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

The work of A.A. Fedoteva and A.M. Tatarnikov was supported by a grant of the Program for Development of the Moscow State University, the ‘‘Leading Scientific School ‘‘Physics of Stars, Relativistic Objects, and Galaxies’’. B.S. Safonov is grateful to the Russian Science Foundation (project no. 17-12-01241) for supporting the observations by differential speckle polarimetry and their interpretation. The speckle polarimeter was created under financial support by the Program for Development of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fedoteva.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoteva, A.A., Tatarnikov, A.M., Safonov, B.S. et al. A Model of the Dust Envelope of the Carbon Mira Star V CrB from Photometry, Infrared Spectroscopy, and Speckle Polarimetry. Astron. Lett. 46, 38–57 (2020). https://doi.org/10.1134/S1063773720010016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720010016

Keywords:

Navigation