Skip to main content
Log in

Redshift Measurements for Galaxies in Clusters by Multislit Spectroscopy at the 1.5-m Telescope RTT150

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

An example of simultaneous spectroscopic redshift measurements for a large number of galaxies in a cluster by multiobject spectroscopy with the medium- and low-resolution TFOSC spectrograph at the RussianTurkish 1.5-m telescope (RTT150) is presented. The redshifts of galaxies in the cluster \(0301.6+0156\) at \(z=0.17057\pm 0.0004\) detected previously by the SunyaevZeldovich signal in the Planck all-sky survey have been measured. The spectra of 16 cluster galaxies, 9 of which were determined as ellipticals, were taken in one observation with an exposure time of 3 h and high-quality redshift measurements were made for them. We show that the redshifts of galaxies with magnitudes to \(m_{r}=20.0\), whose number in the TFOSC field can reach dozens, depending on the cluster richness and distance, can be measured in one observation with the TFOSC spectrograph using multiobject masks. Such measurements may be required to refine the redshifts of clusters and to estimate their masses by the dynamical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://iraf.noao.edu/specatlas/fear/fear.html.

  2. http://cds-espri.ipsl.fr/tapas/.

REFERENCES

  1. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XXIX), Astron. Astrophys. 571, A29 (2014a); arXiv:1303.5089.

    Article  Google Scholar 

  2. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XX), Astron. Astrophys. 571, A20 (2014b).

    Article  Google Scholar 

  3. P. A. R. Ade, N. Aghanim, M. Arnaud et al. (Planck Intemediate Results XXVI), Astron. Astrophys. 582, A29 (2015a); arXiv:1407.6663.

    Article  Google Scholar 

  4. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck 2013 Results XXXII), Astron. Astrophys. 581, A14 (2015b); arXiv:1502.00543.

  5. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck Intermediate Results XXXVI), Astron. Astrophys. 586, A139 (2016a); arXiv:1504.04583.

  6. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck 2015 Results XXVII), Astron. Astrophys. 594, A27 (2016b); arXiv:1502.01598.

  7. P. A. R. Ade, N. Aghanim, M. Arnaud, et al. (Planck 2015 Results XXIV), Astron. Astrophys. 594, A24 (2016c); arXiv:1502.01597.

  8. V. L. Afanasiev and A. V. Moiseev, Astron. Lett. 31, 194 (2005).

    Article  ADS  Google Scholar 

  9. S. Alam, F. D. Albareti, C. A. Prieto, F. Anders, S. F. Anderson, T. Anderton, B. H. Andrews, E. Armengaud, et al., Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article  ADS  Google Scholar 

  10. Z. Aslan, I. F. Bikmaev, E. A. Vitrichenko, R. I. Gumerov, L. A. Dembo, S. F. Kamus, V. Keskin, U. Kiziloglu, et al., Astron. Lett. 27, 398 (2001).

    Article  ADS  Google Scholar 

  11. J. L. Bertaux, R. Lallement, S. Ferron, C. Boonne, and R. Bodichon, et al., Astron. Astrophys. 564, A46 (2014).

    Article  ADS  Google Scholar 

  12. S. Borgani, P. Rosati, P. Tozzi, S. A. Stanford, P. R. Eisenhardt, C. Lidman, B. Holden, R. D. Ceca, et al., Astrophys. J. 561, 13 (2001).

    Article  ADS  Google Scholar 

  13. R. A. Burenin, Astron. Lett. 43, 507 (2017).

    Article  ADS  Google Scholar 

  14. R. A. Burenin and A. A. Vikhlinin, Astron. Lett. 38, 347 (2012).

    Article  ADS  Google Scholar 

  15. R. A. Burenin, A. Vikhlinin, A. Hornstrup, H. Ebeling, H. Quintana, and A. Mescheryakov, Astrophys. J. Suppl. Ser. 172, 561 (2007).

    Article  ADS  Google Scholar 

  16. R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, I. A. Zaznobin, G. A. Khorunzhev, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov, J.-A. Rubiño-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 44, 297 (2018).

    Article  ADS  Google Scholar 

  17. R. Capasso, J. J. Mohr, A. Saro, A. Biviano, N. Clerc, A. Finoguenov, S. Grandis, C. Collins, et al., Mon. Not. R. Astron. Soc. 486, 1594 (2019).

    Article  ADS  Google Scholar 

  18. M. Ho, M. M. Rau, M. Ntampaka, A. Farahi, H. Trac, B. Póczos, et al., Astrophys. J. (2019, in press); arXiv:1902.05950.

  19. M. D. Jhabvala, D. Franz, T. King, G. Kletetschka, A. S. Kutyrev, M. J. Li, S. E. Meyer, S. Moseley, et al., Proc. SPIE 6959, 17 (2008).

    Google Scholar 

  20. C. Jordi, Astrophys. Space Sci. 263, 369 (1998).

    Article  Google Scholar 

  21. A. Mantz, S. W. Allen, D. Rapetti, and H. Ebeling, Mon. Not. R. Astron. Soc. 406, 1759 (2010).

    ADS  Google Scholar 

  22. L. Old, R. A. Skibba, F. R. Pearce, D. Croton, S. I. Muldrew, J. C. Muñoz-Cuartas, D. Gifford, M. E. Gray, et al., Mon. Not. R. Astron. Soc. 441, 1513 (2014).

    Article  ADS  Google Scholar 

  23. M. Pierre, F. Pacaud, J. B. Juin, J. B. Melin, P. Valageas, N. Clerc, P. S. Corasaniti, et al., Mon. Not. R. Astron. Soc. 414, 1732 (2011).

    Article  ADS  Google Scholar 

  24. E. Rozo, R. H. Wechsler, E. S. Rykoff, J. T. Annis, M. R. Becker, A. E. Evrard, J. A. Frieman, S. M. Hansen, et al., Astrophys. J. 708, 645 (2010).

    Article  ADS  Google Scholar 

  25. A. Saro, J. J. Moh, G. Bazin, and K. Dolag, Astrophys. J. 772, 17 (2013).

    Article  Google Scholar 

  26. D. J. Schlegel, D. P. Finkbeiner, M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  27. R. A. Sunyaev and Ya. B. Zeldovich, Comm. Astrophys. Space. Phys. 4, 173 (1972).

    ADS  Google Scholar 

  28. A. Vikhlinin, A. Voevodkin, C. R. Mullis, L. van Speybroeck, H. Quintana, B. R. McNamara, I. Gioia, A. Hornstrup, et al., Astrophys. J. 590, 15 (2003).

    Article  ADS  Google Scholar 

  29. A. Vikhlinin, A. V. Kravtsov, R. A. Burenin, H. Ebeling, W. R. Forman, A. Hornstrup, C. Jones, S. S. Murray, et al., Astrophys. J. 692, 1060 (2009).

    Article  ADS  Google Scholar 

  30. A. A. Vikhlinin, A. V. Kravtsov, M. L. Markevich, R. A. Syunyaev, and E. M. Churazov, Phys. Usp. 57, 317 (2014).

    Article  ADS  Google Scholar 

  31. V. S. Vorob’ev, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, S. N. Dodonov, R. Ya. Zhuchkov, et al., Astron. Lett. 42, 63 (2016).

    Article  ADS  Google Scholar 

  32. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, V. V. Konoplev, M. V. Eselevich, V. L. Afanasiev, S. N. Dodonov,J.-A. Rubiño-Martín, N. Aghanim, and R. A. Sunyaev, Astron. Lett. 45, 492 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank TUBITAK, the Space Research Institute, the Kazan Federal University, and the Academy of Sciences of Tatarstan for their partial support in using RTT150 (the 1.5-m Russian–Turkish telescope in Antalya).

Funding

This work was supported by RSF grant no. 18-22-00520. The work of S. Melnikov was partially funded by the subsidy 3.67 14.2017/8.9 allocated to the Kazan Federal University for the State assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Khamitov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamitov, I.M., Bikmaev, I.F., Burenin, R.A. et al. Redshift Measurements for Galaxies in Clusters by Multislit Spectroscopy at the 1.5-m Telescope RTT150. Astron. Lett. 46, 1–11 (2020). https://doi.org/10.1134/S106377372001003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377372001003X

Keywords:

Navigation