Skip to main content
Log in

RODE: Ranking-Dominance-Based Algorithm for Many-Objective Optimization with Opposition-Based Differential Evolution

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

During the period of 1990s and early 2000s, the Pareto-dominance (PD) relation was successfully applied for solving multiobjective optimization problems (MOPs) with small number of objectives (typically not exceeding four objectives). However, the performance of these PD-based multiobjective evolutionary algorithms (MOEAs) becomes hopeless when it comes to solving problems with larger number of objectives. Many alternative dominance relations have been proposed in the last few years to improve the search ability of EMO algorithms. In this paper, we present the RODE algorithm as a novel scalable approach for many-objective problems which adopts the ranking-dominance relation for evaluating the fitness of solutions that provides improved convergence. The evolutionary search mechanism employed in our algorithm is the conventional differential evolution (DE) approach. However, for attaining the improved diversity of solutions, we have incorporated the weight vectors and opposition-based differential evolution (ODE) in a unique way. In order to validate our RODE approach, we have compared it with other state-of-the-art MOEAs, namely GDE3, NSGAII and two versions of MOEA/D, namely MOEA/D-TCH and MOEA/D-PBI. All the MOEAs have been executed on the standard benchmark problems DTLZ1-DTLZ4 with 5-, 8-, 10-, 15-, and 20-D objective spaces and MaF03, MaF05 and MaF06 with 8-, 10- and 15-D objective spaces. In almost all the simulation experiments (especially with higher than 5-objectives), our approach has achieved promising results in terms of convergence and diversity of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deb, K.; Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  2. Denysiuk, R.; Costa, L.; Espírito Santo, I.: Many-objective optimization using differential evolution with variable-wise mutation restriction. In: Proceedings of the 15th Annual Conference on Genetic And Evolutionary Computation, pp. 591–598. ACM (2013)

  3. Ishibuchi, H.; Tsukamoto, N.; Nojima, Y.: Evolutionary many-objective optimization: a short review. In: IEEE Congress on Evolutionary Computation, 2008, CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 2419–2426. IEEE (2008)

  4. Sülflow, A.; Drechsler, N.; Drechsler, R.: Robust multi-objective optimization in high dimensional spaces. In: International Conference On Evolutionary Multi-criterion Optimization, pp. 715–726. Springer (2007)

  5. Silva, R.; Salimi, A.; Li, M.; Freitas, A.R.; Guimarães, F.G.; Lowther, D.A.: Visualization and analysis of tradeoffs in many-objective optimization: a case study on the interior permanent magnet motor design. IEEE Trans. Magn. 52(3), 1–4 (2016)

    Article  Google Scholar 

  6. Xiang, Y.; Zhou, Y.; Zheng, Z.; Li, M.: Configuring software product lines by combining many-objective optimization and sat solvers. ACM Trans. Softw. Eng. Methodol. 26(4), 14 (2018)

    Article  Google Scholar 

  7. Qasim, S.Z.; Ismail, M. A.: Research problems in search-based software engineering for many-objective optimization. In: 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), pp. 1–6. IEEE (2017)

  8. Mkaouer, M.W.; Kessentini, M.; Bechikh, S.; Deb, K.;  Ó Cinnéide, M.: High dimensional search-based software engineering: finding tradeoffs among 15 objectives for automating software refactoring using nsga-iii. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1263–1270. ACM (2014)

  9. Kremmel, T.; Kubalík, J.; Biffl, S.: Software project portfolio optimization with advanced multiobjective evolutionary algorithms. Appl. Soft Comput. 11(1), 1416–1426 (2011)

    Article  Google Scholar 

  10. Bowman, M.; Briand, L.C.; Labiche, Y.: Solving the class responsibility assignment problem in object-oriented analysis with multi-objective genetic algorithms. IEEE Trans. Softw. Eng. 36(6), 817–837 (2010)

    Article  Google Scholar 

  11. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Zitzler, E.; Laumanns, M.; Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm. TIK-report, vol. 103 (2001)

  13. He, Z.; Yen, G.G.; Zhang, J.: Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans. Evol. Comput. 18(2), 269–285 (2014)

    Article  Google Scholar 

  14. Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A.; et al.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer, Berlin (2007)

    MATH  Google Scholar 

  15. Garza-Fabre, M.; Pulido, G. T.; Coello, C. A. C.: Ranking methods for many-objective optimization. In: Mexican International Conference on Artificial Intelligence, pp. 633–645. Springer (2009)

  16. Zhu, C.; Xu, L.; Goodman, E.D.: Generalization of pareto-optimality for many-objective evolutionary optimization. IEEE Trans. Evol. Comput. 20(2), 299–315 (2016)

    Article  Google Scholar 

  17. Farina, M.; Amato, P.: A fuzzy definition of“‘ optimality” for many-criteria optimization problems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(3), 315–326 (2004)

    Article  Google Scholar 

  18. Sato, H.; Aguirre, H. E.; Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of moeas. In: International conference on evolutionary multi-criterion optimization, pp. 5–20. Springer (2007)

  19. Kukkonen, S.; Lampinen, J.: Ranking-dominance and many-objective optimization. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 3983–3990. IEEE (2007)

  20. Tian, Y.; Cheng, R.; Zhang, X.; Li, M.; Jin, Y.: Diversity assessment of multi-objective evolutionary algorithms: performance metric and benchmark problems. IEEE Comput. Intell. Mag. 14, 61–74 (2019)

    Article  Google Scholar 

  21. Wang, H.; Jin, Y.; Yao, X.: Diversity assessment in many-objective optimization. IEEE Trans. Cybern. 47(6), 1510–1522 (2016)

    Article  Google Scholar 

  22. Bäck, T.; Fogel, D.B.; Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms and Operators, vol. 1. CRC Press, Boca Raton (2000)

    Book  MATH  Google Scholar 

  23. Storn, R.; Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Das, S.; Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2010)

    Article  Google Scholar 

  25. Das, S.; Mullick, S.S.; Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evol Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  26. Zhang, Q.; Li, H.: Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  27. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Berlin (2012)

    MATH  Google Scholar 

  28. Das, I.; Dennis, J.: Normal boundary intersection: a new method for generating pareto optimal points in nonlinear multicriteria optimization problems. SIAM J. Optim 8, 631–657 (1996)

    Article  MATH  Google Scholar 

  29. Li, K.; Deb, K.; Zhang, Q.; Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2014)

    Article  Google Scholar 

  30. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

    Article  Google Scholar 

  31. Zitzler, E.; Laumanns, M.; Bleuler, S.: A tutorial on evolutionary multiobjective optimization. In: Metaheuristics for Multiobjective Optimisation, pp. 3–37. Springer (2004)

  32. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization, pp. 105–145. Springer (2005)

  33. Cheng, R.; Li, M.; Tian, Y.; Xiang, X.; Zhang, X.; Yang, S.; Jin, Y.; Yao, X.: Benchmark functions for the cec’2018 competition on many-objective optimization. Tech. Rep. (2018)

  34. Nebro, A.J.; Durillo, J.J.: jmetal 4.3 user manual. Computer Science Department of the University of Malaga (2013)

  35. Durillo, J.J.; Nebro, A.J.; Alba, E.: The jmetal framework for multi-objective optimization: design and architecture. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

  36. Durillo, J.J.; Nebro, A.J.: jmetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  37. Nebro, A.J.; Durillo, J.J.; Vergne, M.: Redesigning the jmetal multi-objective optimization framework. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1093–1100 (2015)

  38. Li, H.; Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans. Evol. Comput. 13(2), 284–302 (2008)

    Article  Google Scholar 

  39. Kukkonen, S.; Lampinen, J.: Gde3: The third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 443–450. IEEE (2005)

  40. Srinivas, N.; Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  41. Fonseca, C.M.; Knowles, J.D.; Thiele, L.; Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. In: Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), vol. 216, p. 240 (2005)

  42. Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: International Conference On Evolutionary Multi-criterion Optimization, pp. 110–125. Springer (2015)

  43. Yuan, Y.; Xu, H.; Wang, B.: An improved nsga-iii procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 661–668. ACM (2014)

  44. Coello, C.A.C.; Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Program. Evol. Mach. 6(2), 163–190 (2005)

    Article  Google Scholar 

  45. Riquelme, N.; Von Lücken, C.; Baran, B.: Performance metrics in multi-objective optimization. In: Computing Conference (CLEI), 2015 Latin American, pp. 1–11. IEEE (2015)

  46. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Gong, W.; Zhou, A.; Cai, Z.: A multioperator search strategy based on cheap surrogate models for evolutionary optimization. IEEE Trans. Evol. Comput. 19(5), 746–758 (2015)

    Article  Google Scholar 

Download references

Funding

This work was supported by the MoST (Ministry of Science & Technology) endowment and NED University research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Zaffar Qasim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, S.Z., Ismail, M.A. RODE: Ranking-Dominance-Based Algorithm for Many-Objective Optimization with Opposition-Based Differential Evolution. Arab J Sci Eng 45, 10079–10096 (2020). https://doi.org/10.1007/s13369-020-04536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04536-0

Keywords

Navigation