Skip to main content
Log in

Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

By the combination of transmission electron microscope, neutron diffraction and small-angle neutron scattering methods, mechanical fatigue behavior of AL6XN austenitic stainless steel was investigated in the temperature range of 400–600 °C. At 400 °C, in addition to the occurrence of dynamic strain aging, the formation of short-range order was evidenced from the forbidden electron diffraction spot of 1/3 {422} in face-centered cubic (fcc) structure viewed down [111] zone axis, which facilitate the planar slip mode of dislocation and result in the work hardening during the fatigue deformation. The fatigue damage is mainly dominated by the accumulation of planar slip band and the interaction among various slip systems. With increasing temperature, precipitates of chi phase, Laves phase and sigma phase were formed during the fatigue tests at 500 and 600 °C. An increase in precipitation content at 600 °C has also been confirmed by both scanning electron microscope and small-angle neutron scattering analysis. The dislocation pileup originating from the uncoordinated deformation between precipitate and austenitic matrix is an important fatigue damage leading to crack. The continuous cycle softening behavior was also observed on the fatigue curve at 600 °C, which is considered to be caused by dynamic recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.L. Murty, I. Charit, J. Nucl. Mater. 383, 189 (2008)

    Article  CAS  Google Scholar 

  2. J.Q. Zhang, R. Hu, J. Wang, J.S. Li, Acta Metall. Sin. Engl. Lett. 27, 1046 (2014)

    Article  CAS  Google Scholar 

  3. E.E. Denhard, R.H. Espy, Met. Eng. Quart. 12, 18 (1972)

    CAS  Google Scholar 

  4. J.A. Brooks, J.C. Lippold, ASM Handbook 6, 457 (1990)

    Google Scholar 

  5. L.J. Meng, J. Sun, H. Xing, W.W. Yu, F. Xue, Nucl. Eng. Des. 241, 2839 (2011)

    Article  CAS  Google Scholar 

  6. S. Kalnaus, F. Fan, A.K. Vasudevan, Y. Jiang, Eng. Fract. Mech. 75, 2002 (2008)

    Article  Google Scholar 

  7. L.J. Meng, J. Sun, H. Xing, G.W. Pang, J. Nucl. Mater. 394, 34 (2009)

    Article  CAS  Google Scholar 

  8. H. Mughrabi, Metall. Mater. Trans. A 40, 1257 (2009)

    Article  Google Scholar 

  9. C. Laird, in Dislocations in Solids, ed. by F.R.N. Nabarro (North-Holland Publishing Company, New York, 1983), p. 57

    Google Scholar 

  10. C.E. Feltner, C. Laird, Acta Metall. 15, 1621 (1965)

    Article  Google Scholar 

  11. H. Mughrabi, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 40, 431 (2009)

    Article  Google Scholar 

  12. P. Lukáš, M. Klesnil, in Corrosion Fatigue, ed. by O.J. Devereux, A.J. McEvily, R.W. Staehle (NACE-2, Houston, 1972), p. 118

    Google Scholar 

  13. R.G. Li, Q.G. Xie, Y.D. Wang, W.J. Liu, M.G. Wang, G.L. Wu, X.W. Li, M.H. Zhang, Z.P. Lu, C. Geng, T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 115, 483 (2018)

    Article  CAS  Google Scholar 

  14. R.G. Li, Y.D. Wang, W.J. Liu, C. Geng, Q.G. Xie, D.E. Brown, K. An, Acta Mater. 165, 336 (2019)

    Article  CAS  Google Scholar 

  15. U. Keiderling, Appl. Phys. A 74, 1455 (2002)

    Article  Google Scholar 

  16. J. Tian, Y. Yang, L.P. Zhang, X.J. Shao, J. Du, Q.H. Kan, Acta Metall. Sin. Engl. Lett. 30, 822 (2017)

    Article  CAS  Google Scholar 

  17. S. Heino, B. Karlsson, Acta Mater. 49, 353 (2001)

    Article  CAS  Google Scholar 

  18. M. Grujicic, W.S. Owen, Acta Metall. Mater. 43, 4201 (1995)

    Article  CAS  Google Scholar 

  19. R. Taillard, J. Foct, in Proceedings of High Nitrogen Steels, HNS 88, ed. by J. Foct, A. Hendry (The Institute of Metals, Lille, 1988), p. 387

    Google Scholar 

  20. L. Chen, H.S. Kim, S.K. Kim, B.C. De Cooman, ISIJ Int. 47, 1804 (2007)

    Article  CAS  Google Scholar 

  21. P.T. Hua, W.H. Zhang, L.J. Huang, W.R. Sun, Acta Metall. Sin. Engl. Lett. 30, 869 (2017)

    Article  CAS  Google Scholar 

  22. K. Sato, M. Ichinose, Y. Hirotsu, Y. Inoue, ISIJ Int. 52, 868 (2007)

    Google Scholar 

  23. D.P. Abraham, C.J. Altstetter, Metall. Mater. Trans. A 26, 2859 (1995)

    Article  Google Scholar 

  24. L. Luo, W. Jie, Y. Xu, Y. He, L. Xu, L. Fu, R. Soc, Chem. 16, 5073 (2014)

    CAS  Google Scholar 

  25. X.J. Jiang, J. Tafto, B. Noble, B. Holme, G. Waterloo, Metall. Mater. Trans. A 31, 339 (2000)

    Article  Google Scholar 

  26. A. Marucco, B. Nath, J. Mater. Sci. 23, 2107 (1988)

    Article  CAS  Google Scholar 

  27. Y.S. Kim, Y.M. Wan, S.S. Kim, Acta Mater. 83, 507 (2015)

    Article  CAS  Google Scholar 

  28. P. Verma, G. Sudhakar Rao, P. Chellapandi, G.S. Mahobia, K. Chattopadhyay, N.C. Santhi Srinivas, V. Singh, Mater. Sci. Eng. A 621, 39 (2015)

    Article  CAS  Google Scholar 

  29. V. Gerold, H.P. Karnthaler, Acta Metall. 37, 2177 (1988)

    Article  Google Scholar 

  30. J. Anburaj, S.S. Mohamed Nazirudeen, R. Narayanan, B. Anandavel, A. Chandrasekar, Mater. Sci. Eng. A 535, 99 (2012)

    Article  CAS  Google Scholar 

  31. A.F. Padilha, P.R. Rios, ISIJ Int. 42, 325 (2002)

    Article  CAS  Google Scholar 

  32. Y. Minami, H. Kimura, Y. Ihara, Mater. Sci. Technol. 2, 795 (1986)

    Article  CAS  Google Scholar 

  33. J.K.L. Lai, Mater. Sci. Eng. A 58, 195 (1983)

    Article  CAS  Google Scholar 

  34. M. Breda, M. Pellizzari, M. Frigo, Acta Metall. Sin. Engl. Lett. 28, 331 (2015)

    Article  CAS  Google Scholar 

  35. L.J. Meng, J. Sun, H. Xing, J. Nucl. Mater. 427, 116 (2012)

    Article  CAS  Google Scholar 

  36. Y.Y. Hong, S.L. Li, H.J. Li, J. Li, G.A. Sun, Y.D. Wang, Metall. Mater. Trans. A 49, 3237 (2018)

    Article  CAS  Google Scholar 

  37. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51231002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangai Sun.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Gao, P., Li, H. et al. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures. Acta Metall. Sin. (Engl. Lett.) 33, 799–807 (2020). https://doi.org/10.1007/s40195-020-01020-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01020-4

Keywords

Navigation