Skip to main content
Log in

Change in Arsenic Leaching from Silty Soil by Adding Slag Cement

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cementitious materials are commonly used to reinforce the bearing capacity of silty soils. However, there is very little data about how changes in arsenic (As) leaching from silty soils caused by the addition of cementitious materials. Therefore, batch leaching tests were conducted using As-bearing silty soil under different pH conditions. The pH was adjusted by changing the amount of slag cement added or the concentration of sodium hydroxide. This allows us to evaluate the effects of cement on As leaching. In addition, two different additives were applied to reduce As migration. The results show that high concentration of calcium ion (Ca2+) in leachates of soil-cement mixture has a significant effect in reducing the mobility of As even under hyperalkaline pH conditions. Arsenic immobilized by Ca2+ was observed in two patterns. The first mechanism was the help of Ca2+ to reduce the negative electrical potential on the surface of (hydr)oxide minerals under high pH conditions, thereby reducing the mobility of As by adsorption and coagulation of fresh precipitates of Fe and Al hydroxides. The second was the precipitation of calcium carbonate. This precipitate either directly adsorb/co-precipitate As or lower the concentration of strong competing ion, silica, both of which reduced the As mobility. When Ca- or Mg-based additive was added to the silty soil-cement mixture, As concentration in the leachate decreased. These findings are useful in developing sustainable soil-cement reinforcement techniques to avoid contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdul, K. S., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40, 828–846.

    Google Scholar 

  • Anderson, M. A., Ferguson, J. F., & Gavis, J. (1976). Arsenate adsorption on amorphous aluminum hydroxide. Journal of Colloid and Interface Science, 54, 391–399.

    CAS  Google Scholar 

  • Babu, K. G., & Kumar, V. S. R. (2000). Efficiency of GGBS in concrete. Cement and Concrete Research, 30, 1031–1036.

    Google Scholar 

  • Bell, F. G., & Maud, R. R. (1994). Dispersive soils and earth dams with some experiences form South Africa. Environmental and Engineering Geoscience, 31, 433–446.

    Google Scholar 

  • Boschuk, J. (1991). Landfill covers – An engineer perspective. Geotechnical Fabrics Report., 9, 23–34.

    Google Scholar 

  • Bothe, J. V., & Brown, P. W. (1999). Arsenic immobilization by calcium arsenate formation. Environmental Science & Technology, 3, 3806–3811.

    Google Scholar 

  • Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9, 279–286.

    CAS  Google Scholar 

  • Boyle, R. W., & Jonasson, I. R. (1973). The geochemistry of as and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 2, 251–296.

    CAS  Google Scholar 

  • Brookins, D. G. (1988). Eh-pH diagrams for geochemistry. Berlin: Springer.

    Google Scholar 

  • Clevenger, T. E. (1990). Use of sequential extraction to evaluate the heavy metals in mining wastes. Water, Air, & Soil Pollution, 50, 241–253.

    CAS  Google Scholar 

  • Cristelo, N., Glendinning, S., Fernandes, L., & Pinto, A. T. (2013). Effects of alkaline-activated fly ash and Portland cement on soft soil stabilization. Acta Geotechnica, 8, 395–405.

    Google Scholar 

  • Dhiraj, K., Gourav, D., & Akash, P. (2015). Performance of different form of soil reinforcement. International Journal of Science Technology & Management, 4, 667–677.

    Google Scholar 

  • Douglas, C., MacLaren, A. W., & Mary, A. W. (2003). Cement: Its chemistry and properties. Journal of Chemical Education, 80, 623–635.

    Google Scholar 

  • Eriksson, R., Merta, J., & Rosenholm, J. B. (2007). The calcite/water interface: I. Surface charge in indifferent electrolyte media and the influence of low-molecular-weight polyelectrolyte. Journal of Colloid and Interface Science, 313, 184–193.

    CAS  Google Scholar 

  • Fu, J., He, Q., Miedziak, P. J., Brett, G. L., Huang, X., Pattisson, S., Douthwaite, M., & Hutchings, G. J. (2018). The role of Mg (OH)2 in the so-called “base-free” oxidation of glycerol with AuPd catalysts. Chemistry, 24(10), 2396–2402.

    CAS  Google Scholar 

  • García-Sánchez, A., Alonso-Rojo, P., & Santos-Francés, F. (2010). Distribution and mobility of arsenic in soils of a mining area (Western Spain). Science of the Total Environment, 408, 4194–4201.

    Google Scholar 

  • Giles, D. E., Mohapatra, M., Issaa, T. B., Anand, S., & Singha, P. (2011). Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management, 92, 3011–3022.

    CAS  Google Scholar 

  • Glazener, F. S., Ellis, J. G., & Johnson, P. K. (1968). Electrocardiographic findings with arsenic poisoning. California Medicine, 109, 158–162.

    CAS  Google Scholar 

  • Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.

    CAS  Google Scholar 

  • Hong, Y. S., Song, K. H., & Chung, J. Y. (2014). Health effects of chronic arsenic exposure. Journal of Preventive Medicine and Public Health, 47, 245–252.

    Google Scholar 

  • Huang, Y. C., Fowkes, F. M., Lloyd, T. B., & Sanders, N. D. (1991). Adsorption of calcium-ions from calcium-chloride solutions onto calcium-carbonate particles. Langmuir, 7, 1742–1748.

    CAS  Google Scholar 

  • Huyen, D. T., Tabelin, C. B., Thuan, H. M., Dang, D. H., Truong, P. T., Vongphuthone, B., Kobayashi, M., & Igarashi, T. (2019). The solid-phase partitioning of arsenic in unconsolidated sediments of the Mekong Delta, Vietnam and its modes of release under various conditions. Chemosphere, 233, 512–523.

    CAS  Google Scholar 

  • Jia, Y., Lou, T., Yu, X. Y., Sun, B., Liu, J. H., & Huang, X. J. (2013). A facile template free solution approach for the synthesis of dypingite nanowires and subsequent decomposition to nanoporous MgO nanowires with excellent arsenate adsorption properties. RSC Advances, 3, 5430–5437.

    CAS  Google Scholar 

  • Juilland, P., Gallucci, E., Flatt, R., & Scrivener, K. (2010). Dissolution theory applied to the induction period in alite hydration. Cement and Concrete Research, 40, 831–844.

    CAS  Google Scholar 

  • Kalinkin, A. M., Kalinkina, E. V., Zalkind, O. A., & Makarova, T. I. (2005). Chemical interaction of calcium oxide and calcium hydroxide with CO2 during mechanical activation. Inorganic Materials, 41, 1073–1079.

    CAS  Google Scholar 

  • Karri, K. S., Rao, R. G. V., & Raju, P. M. (2015). Strength and durability studies on GGBS concrete. SSRG International Journal of Civil Engineering, 2, 34–41.

    Google Scholar 

  • Khalil, A., Ijaz, A. B., Majid, M., Munawar, I., & Zafar, I. (2012). Removal of heavy metals (Zn, Cr, Pb, Cd, Cu and Fe) in aqueous media by calcium carbonate as an adsorbent. International Journal of Chemical and Biochemical Sciences, 2, 48–53.

    Google Scholar 

  • Kolias, S., Rigopoulou, V. K., & Karaholias, A. (2005). Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27, 310–313.

    Google Scholar 

  • Kumpiene, J., Fitts, J. P., & Mench, M. (2012). Arsenic fractionation in mine spoils 10 years after aided phytostabilization. Environmental Pollution, 166, 82–88.

    CAS  Google Scholar 

  • Kutus, B., Gacsi, A., Pallagi, A., Palinko, I., Peintler, G., & Sipos, P. (2016). A comprehensive study on the dominant formation of the dissolved Ca (OH)2(aq) in strongly alkaline solutions saturated by Ca (II). RSC Advances, 51, 45231–45240.

    Google Scholar 

  • Li, W., Chen, D., Xia, F., Tan, J. Z. Y., Huang, P. P., Song, W. G., Nursam, N. M., & Caruso, R. A. (2016). Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites. Environmental Science: Nano, 3, 94–106.

    CAS  Google Scholar 

  • Marumo, K., Ebashi, T., & Ujiie, T. (2003). Heavy metal concentrations, leachabilities and lead isotope ratios of Japanese soils. Shigen-Chihsitsu, 53, 125–146 (in Japanese with English abstract).

    CAS  Google Scholar 

  • Matsushita, K. (1971). Explanatory text of the geological map of Japan (Scale 1:50,000) EBETSU (Sapporo-22).

  • Meng, X., Bang, S., & Korfiatis, G. P. (2000). Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Research, 34, 1255–1261.

    CAS  Google Scholar 

  • Moulin, P., & Roques, H. (2003). Zeta potential measurement of calcium carbonate. Journal of Colloid and Interface Science, 261, 115–126.

    CAS  Google Scholar 

  • Odler, I. (2019). Hydration, setting and hardening of Portland cement. In P. C. Hewlett & M. Liska (Eds.), Lea’s Chemistry of Cement and Concrete (5th ed., pp. 157–250). Oxford: Elsevier Science & Technology.

  • Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29, 505–514.

    CAS  Google Scholar 

  • Ouyang, X., Koleva, D. A., Ye, G., & Breugel, K. V. (2017). Insight into the mechanisms of nucleation and growth of C-S-H on fillers. Materials and Structures, 50, 213–225.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User's guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey: Earth Science Information Center.

  • Parks, J. L., Novak, J., Macphee, M., Itle, C., & Edwards, M. (2003). Effect of calcium on arsenic release from ferric and alum residuals. JWWA, 95, 108–118.

    CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16, 1247–1253.

    CAS  Google Scholar 

  • Renard, F., Putnis, C. V., Montes-Hernandez, G., Ruiz-Agudo, E., Hovelmann, J., & Sarret, G. (2015). Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging. Geochimica et Cosmochimica Acta, 159, 61–79.

    CAS  Google Scholar 

  • Robertson, F. N. (1989). Arsenic in groundwater under oxidizing conditions, south-West United States. Environmental Geochemistry and Health, 17, 117–185.

    Google Scholar 

  • Sharifah, Z., Kamarudin, H., Mustafa, A. B., Binhussain, M., & Siti, S. (2013). Review on soil stabilization techniques. Australian Journal of Basic and Applied Sciences, 7, 258–265.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., MacDonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.

    CAS  Google Scholar 

  • So, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2012). Competitive adsorption of arsenate and phosphate onto calcite: Experimental results and modeling with CCM and CD-MUSIC. Geochimica et Cosmochimica Acta, 93, 1–13.

    CAS  Google Scholar 

  • Tabelin, C. B., Igarashi, T., & Takahashi, R. (2012). Mobilization and speciation of arsenic from hydrothermally altered rock in laboratory column experiments under ambient conditions. Applied Geochemistry, 27, 326–342.

    CAS  Google Scholar 

  • Tangviroon, P., & Igarashi, T. (2017). Modeling and evaluating the performance of river sediment on immobilizing arsenic from hydrothermally altered rock in laboratory column experiments with Hydrus-1D. Water, Air, & Soil Pollution, 228, 465.

    Google Scholar 

  • Tangviroon, P., Hayashi, R., & Igarashi, T. (2017). Effects of additional layer(s) on the mobility of arsenic from hydrothermally altered rock in laboratory column experiments. Water, Air, & Soil Pollution, 228, 191.

    Google Scholar 

  • Tatsumi, K., Jin, K., & Tachibana, H. (2006). Dynamic state of arsenic and basin management in Toyohira River. Journal of Japan Society on Water Environment, 29, 671–677.

    CAS  Google Scholar 

  • Tessier, A., Campbell, G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–850.

    CAS  Google Scholar 

  • Tizo, M. S., Blanco, L. A. V., Cagas, A. C. Q., Dela, B. R. B., Encoy, J. C., Gunting, J. V., Arazo, R. O., & Mabayo, V. I. F. (2018). Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustainable Environment Research, 28, 326–332.

    CAS  Google Scholar 

  • Tombácz, E. (2009). pH-dependent surface charging of metal oxides. Periodica Polytechnica Chemical Engineering, 53, 77–86.

    Google Scholar 

  • Umeki, Y. (2015). History and utilization of Portland blast furnace slag cement. Nippon Steel & Sumitomo Metal Technical Report, 109, 109–113.

    Google Scholar 

  • Vink, B. W. (1996). Stability relations of antimony and arsenic compounds in the light of reversed and extended Eh-pH diagrams. Chemical Geology, 130, 21–30.

    CAS  Google Scholar 

  • Vongphuthone, B., Kobayashi, M., & Igarashi, T. (2017). Factors affecting arsenic content of unconsolidated sediments and its mobilization in the Ishikari Plain, Hokkaido, Japan. Environmental Earth Sciences, 76, 645–659.

    Google Scholar 

  • Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: Effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf. A: Physicochem. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 97–110.

    CAS  Google Scholar 

  • Xing, Z., Bai, L., Ma, Y., Wang, D., & Li, M. (2018). Mechanism of magnesium oxide hydration based on the multi-rate model. Materials (Basel), 11(10), 1835.

    Google Scholar 

  • Yu, X. Y., Lou, T., Jia, Y., Zhang, X. Y., Liu, J. H., & Huang, X. J. (2011). Porous hierarchically micro/nanostructured MgO: Morphology control and their excellent performance in as (III) and as(V) removal. The Journal of Physical Chemistry C, 115, 22242–22250.

    CAS  Google Scholar 

  • Zhu, Y. N., Zhang, X. H., Xie, Q. L., Wang, D. Q., & Cheng, G. W. (2006). Solubility and stability of calcium arsenates at 25∘C. Water, Air, & Soil Pollution, 169, 221–238.

    CAS  Google Scholar 

Download references

Funding

The authors wish to thank the Japan Society for the Promotion of Science (JSPS) grant-in-aid for scientific research (Grant number: JP26289149) for the financial support and Hokkaido Development for supporting in collecting the core sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawit Tangviroon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangviroon, P., Endo, Y., Fujinaka, R. et al. Change in Arsenic Leaching from Silty Soil by Adding Slag Cement. Water Air Soil Pollut 231, 259 (2020). https://doi.org/10.1007/s11270-020-04630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04630-x

Keywords

Navigation