Skip to main content
Log in

Failure Analysis and Remedial Solution Suggestion for Superheater Tubes of a Power Plant Boiler

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Superheater tubes are the most critical components of a power plant’s boiler. Due to operation in high-temperature and -pressure conditions, platen superheater (primary superheater) tubes in thermal power point boilers are exposed to breakdowns such as creep failure and overheating. Therefore, identifying the causes of these failures and its maintenance is very important. Platen superheater tubes have failed in several similar power plant units at the same specific area. This problem is analyzed by three methods to find out the reason. These methods are metallography, measuring oxide layer thickness and CFD. These methods prove that the temperature difference between tubes is the cause of failure at the critical area. Length difference between tubes is the reason of the temperature raising in this case. Then, three solution methods are presented, namely (1) changing tubes material, (2) balancing tubes length and redesigning the platen superheater and (3) replacing the failed tube with new one. For comparing the methods, balancing tube’s length and redesigning is selected. The selected solution introduces three proposed plans. These plans will be alternative for the failed platen superheater. A comparison made between three proposed design and platen superheater indicates that all of the three proposed designs are better in temperature side than the existing platen superheater. After that, the best design is chosen by the CFD results. The selected design here is the proposed plan 2 because it reduces the 25 K temperature difference of the platen superheater to 5 K and this will prevent this kind of failing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

x :

Oxide layer thickness

k :

Constant

t :

Time

T :

Temperature

K :

Kelvin

ρ :

Density

l :

Axis

h :

Pressure head

D :

Diameter

g :

Gravity

R :

Rankin

c :

Specific heat capacity

m :

Flow rate

Q :

Heat transfer

F :

Force

L :

Length

p :

Pressure

f :

Roughness

V :

Velocity

u :

Unit vector

References

  1. French D, Metallurgical Failures in Fossil Fired Boilers, A Wiley Interscience Publication, New York (2000).

    Google Scholar 

  2. ASM Handbook, Failure Analysis and Prevention, ASM International (2002) p 11.

  3. Jones D R H, Eng Fail Anal11 (2004) 873.

    Article  CAS  Google Scholar 

  4. Psyllaki P P, Eng Fail Anal16 (2009) 1420.

    Article  CAS  Google Scholar 

  5. Begum S, J Mechatron1 (2013) 1.

    Google Scholar 

  6. Kapayeva S D, Bergander M, Vakhguelt A, and Khairaliyev S I, J Vibroeng19 (2017) 5892.

    Article  Google Scholar 

  7. Viswanathan R, J Eng Mater Technol122 (2000) 246.

    Article  CAS  Google Scholar 

  8. Jadhao P K, Int J Eng Sci Comput7 (2017) 10823.

    Google Scholar 

  9. Neves D L C, Mater Res7 (2004) 155.

    Article  CAS  Google Scholar 

  10. Othman H, Eng Fail Anal16 (2009) 329.

    Article  Google Scholar 

  11. Purbolaksono J, J Loss Prevent Process Ind23 (2010) 98-05.

    Article  Google Scholar 

  12. Albarody T M B, in Proceedings of the 14 International th Conference on Simulation and Experiments in Heat Transfer and its Applications (2016).

  13. Taler D, Int J Therm Sci129 (2018) 320.

    Article  Google Scholar 

  14. Rahimi M, Appl Therm Eng26 (2006) 2192-00.

    Article  Google Scholar 

  15. Pramanick A K, Case Stud Eng Fail Anal9 (2017) 17.

    Article  Google Scholar 

  16. Movahedi-Rad A, Eng Fail Anal48 (2015) 94-04.

    Article  Google Scholar 

  17. Iqbal S-H, in International Conference on Mechanical Engineering and Renewable Energy (2017).

  18. Kim B-S, Eng Fail Anal17 (2010) 864.

    Article  CAS  Google Scholar 

  19. Saha A, Case Stud Eng Fail Anal7 (2017) 57.

    Article  Google Scholar 

  20. Liang Z, Eng Fail Anal45 (2014) 59.

    Article  CAS  Google Scholar 

  21. Purbolaksono J, Eng Fail Anal17 (2010) 158.

    Article  CAS  Google Scholar 

  22. Dehnavi F, Eng Fail Anal80 (2017) 368.

    Article  CAS  Google Scholar 

  23. Fetni S, Eng Fail Anal79 (2017) 575.

    Article  CAS  Google Scholar 

  24. Tibba G-S, Energy Proc93 (2016) 197-02.

    Article  Google Scholar 

  25. Goyal S, Mater Sci Eng A730 (2018) 16.

    Article  CAS  Google Scholar 

  26. Qi J, Int J Heat Mass Transf122 (2018) 929.

    Article  CAS  Google Scholar 

  27. Kauppila P, Proc Struct Integr2 (2016) 887.

    Article  Google Scholar 

  28. Taler D, Trojan M., Dzierwa P, Kaczmarski K, and Taler J, Int J Therm Sci129 (2018).

  29. Raju C-S-K, Saleem S, Mamatha S-U, and Iqtadar H, Int J Therm Sci132 (2018) 309.

    Article  Google Scholar 

  30. Antigoni K, Gorder R-V, Int J Therm Sci121 (2017) 150.

    Article  Google Scholar 

  31. Concari S, ECCC6 (2005) 1.

    Google Scholar 

  32. Valeh-e-sheyda P, Rashidi H, and Ghaderzadeh F, J Therm Anal Calorim135 (2018) 1899-09.

    Google Scholar 

  33. Ozden E, and Tari I, Energy Convers Manag51 (2010) 1004.

    Article  CAS  Google Scholar 

  34. Shoghl S-N, Loloei Z, and Moraveji M-K, J Therm Anal Calorim136 (2019) 1831.

    Article  Google Scholar 

  35. Jahangiri A, and Ahmadi O, J Therm Anal Calorim (2019) 1.

  36. Başaran A, Yılmaz T, and Çivi C, J Therm Anal Calorim134 (2018) 2265.

    Article  Google Scholar 

  37. Kvrivishvili A-R, Samokhin S-A, Morozova T-N, Gruznov A-V, Tsepenok A-I, Serant F-A, Belorutskii I-Yu, and Lavrinenko A-A, Power Technol Eng52 (2018) 13.

    Article  Google Scholar 

  38. Singh O-K, J Therm Anal Calorim123 (2016) 829.

    Article  CAS  Google Scholar 

  39. White F-M, Fluid Mechanics, Mc Graw Hill, Boston (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ebrahim Moussavi Torshizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shami, A., Moussavi Torshizi, S.E. & Jahangiri, A. Failure Analysis and Remedial Solution Suggestion for Superheater Tubes of a Power Plant Boiler. Trans Indian Inst Met 73, 1729–1741 (2020). https://doi.org/10.1007/s12666-020-01968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01968-y

Keywords

Navigation