Skip to main content
Log in

Novel analysis of the fractional glucose–insulin regulatory system with non-singular kernel derivative

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Diabetes mellitus, at the forefront of the diseases of our age, is a type of disease that plays a leading role in the formation of many deadly diseases and is very common all over the world. In this work, based on the system in Shabestari et al. (Chaos Solitons Fractals 112:44–51, 2018), we give the fractional glucose–insulin regulatory system for the first time by Caputo–Fabrizio derivative. We present special solutions, stability analysis, uniqueness of the solution for this fractional system with the aid of Banach fixed point theory. Taking various values belonging to the fractional order into consideration, we present some numerical results according to the relation between glucose, insulin and \(\beta \)-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.A. Abbas, J.A. Robbins, Robbins Basic Pathology (Elsevier, Amsterdam, 2014)

    Google Scholar 

  2. J.D. Gonzalvo, Am. J. Manag. Care 24, 6 (2018)

    Google Scholar 

  3. M. Blair, Urol. Nurs. 36, 1 (2016)

    Google Scholar 

  4. National Diabetes Statistics Report Data Statistics Diabetes CDC [Internet] (2020). https://www.cdc.gov/diabetes/data/statistics/statistics-report.html

  5. V.L. Tokarz, P.E. Macdonald, A. Klip, J. Cell Biol. 217, 7 (2018)

    Google Scholar 

  6. J.R. White, Diabetes Spectr. 27, 82–86 (2014)

    MathSciNet  Google Scholar 

  7. B. Freeland, Diabetes Mellit. 34, 8 (2016)

    Google Scholar 

  8. S. Chatterjee, M.J. Davies, S. Heller, J. Speight, F.J. Snoek, K. Khunti, Diabetes Mellit., Diabetes structured self-management education programmes: a narrative review and current innovations (Lancet Publishing Group, 2018)

  9. C.A. Chrvala, D. Sherr, R.D. Lipman, Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control, 99 (Elsevier, Amsterdam, 2016)

    Google Scholar 

  10. A.J. Garber, M.J. Abrahamson, J.I. Barzilay, L. Blonde, Z.T. Bloomgarden, M.A. Bush, Endocr. Pract. 19, 2 (2013)

    Google Scholar 

  11. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 (World Scientific Publishing, Boston, 2012)

    MATH  Google Scholar 

  12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  13. A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology (Academic Press, New York, 2017)

    MATH  Google Scholar 

  14. N. Özdemir, D. Avci, B.B. Iskender, Int. J. Optim. Control Theor. Appl. 1, 1 (2011)

    Google Scholar 

  15. N. Özdemir, D. Karadeniz, B.B. Iskender, Phys. Lett. A 373, 2 (2009)

    Google Scholar 

  16. N. Özdemir, E. Uçar, AIMS Math. 5, 2 (2020)

    Google Scholar 

  17. S. Uçar, E. Uçar, N. Özdemir, Z. Hammouch, Chaos Solitons Fractals 118, 2 (2019)

    Google Scholar 

  18. F. Evirgen, Int. J. Optim. Control Theor. Appl. 6, 2 (2016)

    MathSciNet  Google Scholar 

  19. F. Evirgen, N. Özdemir, J. Comput. Nonlinear Dyn. 6, 2 (2011)

    Google Scholar 

  20. N. Özdemir, M. Yavuz, Acta Phys. Pol. A 132, 1098–1101 (2017)

    ADS  Google Scholar 

  21. M. Yavuz, N. Özdemir, H.M. Baskonus, Eur. Phys. J. Plus 133, 215 (2018)

    Google Scholar 

  22. A. Fernandez, D. Baleanu, H.M. Srivastava, Commun. Nonlinear Sci. Numer. Simulat. 67, 517–527 (2019)

    ADS  Google Scholar 

  23. D. Baleanu, A. Fernandez, Commun. Nonlinear Sci. Numer. Simulat. 59, 222 (2018)

    ADS  Google Scholar 

  24. H.M. Baskonus, T. Mekkaoui, Z. Hammouch, H. Bulut, Entropy 17, 8 (2015)

    Google Scholar 

  25. J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504–515 (2015)

    Google Scholar 

  26. M. Modanlı, Int. J. Optim. Control Theor. Appl. 9, 3 (2019)

    MathSciNet  Google Scholar 

  27. I. Koca, Int. J. Optim. Control Theor. Appl. 8, 1 (2018)

    MathSciNet  Google Scholar 

  28. M.M. Özyetkin, Int. J. Optim. Control Theor. Appl. 10, 1 (2020)

    MathSciNet  Google Scholar 

  29. A.R. Carvalho, C.M. Pinto, J.N. Tavares, Int. J. Optim. Control Theor. Appl. 9, 3 (2019)

    Google Scholar 

  30. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 2 (2015)

    Google Scholar 

  31. S. Ullah, M.A. Khan, M. Farooq, Z. Hammouch, D. Baleanu, Discrete Contin. Dyn. Syst. Ser. S 13, 3 (2020)

    Google Scholar 

  32. A. Atangana, I. Koca, J. Nonlinear Sci. Appl. 89, 447 (2016)

    Google Scholar 

  33. M. Yavuz, E. Bonyah, Phys. A 525, 373–393 (2019)

    MathSciNet  Google Scholar 

  34. E. Bonyah, A. Atangana, M. Chand, Chaos Solitons Fractals 2, 100007 (2019)

    Google Scholar 

  35. M.A. Dokuyucu, E. Celik, H. Bulut, H.M. Baskonus, Eur. Phys. J. Plus 133, 92 (2018)

    Google Scholar 

  36. S.A. Khan, K. Shah, G. Zaman, F. Jarad, Chaos 29, 013144 (2019)

    ADS  MathSciNet  Google Scholar 

  37. J. Singh, D. Kumar, J.J. Nieto, Chaos Solitons Fractals 99, 109–115 (2017)

    ADS  MathSciNet  Google Scholar 

  38. D. Kumar, J. Singh, D. Baleanu, Nonlinear Dynam. 91, 1 (2018)

    Google Scholar 

  39. S. Bhatter, A. Mathur, D. Kumar, J. Singh, Phys. A 527, 122578 (2020)

    Google Scholar 

  40. P. Veereshaa, H.M. Baskonus, D.G. Prakasha, W. Gao, G. Yele, Chaos Solitons Fractals 133 (2020)

  41. A.R.M. Carvalho, C.M.A. Pinto, J.M. de Carvalho, Mathematical Modelling and Optimization of Engineering Problems (Springer, Berlin, 2020)

    Google Scholar 

  42. J. Singh, D. Kumar, D. Baleanu, Adv. Differ. Equ. 2018, 231 (2018)

    Google Scholar 

  43. G. Magombedze, P. Nduru, C.P. Bhunu, S. Mushayabasa, BioSystems 102, 88–98 (2010)

    Google Scholar 

  44. P.S. Shabestari, S. Panahi, B. Hatef, S. Jafari, J.C. Sprott, Chaos Solitons Fractals 112, 44–51 (2018)

    ADS  MathSciNet  Google Scholar 

  45. J. Losada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 2 (2015)

    Google Scholar 

  46. Z.M. Odibat, S. Momani, Int. J. Nonlinear Sci. Numer. Simul. 7, 27–34 (2006)

    MathSciNet  Google Scholar 

  47. A. Atangana, İ. Koca, J. Nonlinear Sci. Appl. 9, 2467–2480 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Asist. Prof. Dr. Beyza Billur Iskender Eroğlu for her valuable contributions to Sect. 8 of our study. This research is supported by Balikesir University Research Grant No. Bap 2019/098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sümeyra Uçar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uçar, S., Özdemir, N., Koca, İ. et al. Novel analysis of the fractional glucose–insulin regulatory system with non-singular kernel derivative. Eur. Phys. J. Plus 135, 414 (2020). https://doi.org/10.1140/epjp/s13360-020-00420-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00420-w

Navigation