Skip to main content
Log in

Electromagnetic proton–neutron mass difference

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We discuss the Cottingham formula and evaluate the proton–neutron electromagnetic mass difference exploiting the state-of-the-art phenomenological input. We decompose individual contributions to the mass splitting into Born, inelastic and subtraction terms. We evaluate the subtraction-function contribution connecting the input based on experimental data with the operator product expansion matched to QCD which allows us to avoid model dependence and to reduce errors of this contribution. We evaluate inelastic and Born terms accounting for modern low-\(Q^2\) data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Without inputs from Ref. [32], the subtraction term contributes \(\delta M^{\mathrm {subt}}_{p-n} = 0.54 \pm 0.46~\mathrm {MeV}\).

  2. The proton and neutron mass corrections based on the state-of-the-art fits from Ref. [46] are in agreement with our results and have smaller uncertainties.

  3. A naive assignment of 3–5% error to nucleon structure functions gives an uncertainty estimate comparable to the inelastic contribution. A proper error estimate calls for reanalysis of nucleon structure functions taking correlations into account.

References

  1. M. Tanabashi et al., Phys. Rev. D. 98(3), 030001 (2018)

    Article  ADS  Google Scholar 

  2. W.N. Cottingham, Ann. Phys. 25, 424 (1963)

    Article  ADS  Google Scholar 

  3. A. Zee, Phys. Rep. 3, 127 (1972)

    Article  ADS  Google Scholar 

  4. J. Gasser, H. Leutwyler, Nucl. Phys. B 94, 269 (1975)

    Article  ADS  Google Scholar 

  5. J. C. Collins, Nucl. Phys. B 149, 90 (1979) Erratum: [Nucl. Phys. B 153, 546 (1979)] Erratum: [Nucl. Phys. B 915, 392 (2017)]

  6. A. Walker-Loud, C.E. Carlson, G.A. Miller, Phys. Rev. Lett. 108, 232301 (2012)

    Article  ADS  Google Scholar 

  7. J. Gasser, M. Hoferichter, H. Leutwyler, A. Rusetsky, Eur. Phys. J. C 75(8), 375 (2015)

    Article  ADS  Google Scholar 

  8. J. Gasser, H. Leutwyler, A. Rusetsky,. arXiv:2003.13612 [hep-ph]

  9. A.W. Thomas, X.G. Wang, R.D. Young, Phys. Rev. C 91(1), 015209 (2015)

    Article  ADS  Google Scholar 

  10. F.B. Erben, P.E. Shanahan, A.W. Thomas, R.D. Young, Phys. Rev. C 90(6), 065205 (2014)

    Article  ADS  Google Scholar 

  11. M.G. Endres, A. Shindler, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. Lett. 117(7), 072002 (2016)

    Article  ADS  Google Scholar 

  12. S.R. Beane, K. Orginos, M.J. Savage, Nucl. Phys. B 768, 38 (2007)

    Article  ADS  Google Scholar 

  13. G.M. de Divitiis et al., JHEP 1204, 124 (2012)

    Article  ADS  Google Scholar 

  14. N.F. Nasrallah, Phys. Rev. C 87(5), 055203 (2013)

    Article  ADS  Google Scholar 

  15. N.F. Nasrallah, Addendum: [Phys. Rev. C 87, 059903 (2013)]

  16. N.F. Nasrallah, [Addendum: Phys. Rev. C 87(6), 069903 (2013)]

  17. R. Horsley et al., [QCDSF and UKQCD Collaborations]. Phys. Rev. D 86, 114511 (2012)

  18. P.E. Shanahan, A.W. Thomas, R.D. Young, Phys. Lett. B 718, 1148 (2013)

    Article  ADS  Google Scholar 

  19. T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, S. Uno, N. Yamada, Phys. Rev. D 82, 094508 (2010)

    Article  ADS  Google Scholar 

  20. S. Borsanyi et al. [Budapest-Marseille-Wuppertal Collaboration], Phys. Rev. Lett. 111(25), 252001 (2013)

  21. S. Borsanyi et al., Science 347, 1452 (2015)

    Article  ADS  Google Scholar 

  22. R. Horsley et al., J. Phys. G 43(10), 10LT02 (2016)

    Article  Google Scholar 

  23. M.C. Birse, J.A. McGovern, Eur. Phys. J. A 48, 120 (2012)

    Article  ADS  Google Scholar 

  24. A. Sibirtsev, P.G. Blunden, W. Melnitchouk, A.W. Thomas, Phys. Rev. D 82, 013011 (2010)

    Article  ADS  Google Scholar 

  25. A. Sibirtsev, P.G. Blunden, Phys. Rev. C 88(6), 065202 (2013)

    Article  ADS  Google Scholar 

  26. O. Tomalak, M. Vanderhaeghen, Eur. Phys. J. C 76(3), 125 (2016)

    Article  ADS  Google Scholar 

  27. O. Tomalak, Eur. Phys. J. A 55(5), 64 (2019). https://doi.org/10.1140/epja/i2019-12743-1

    Article  ADS  Google Scholar 

  28. H. Pilkuhn, W. Schmidt, A.D. Martin, C. Michael, F. Steiner, B.R. Martin, M.M. Nagels, J.J. de Swart, Nucl. Phys. B 65, 460 (1973)

    Article  ADS  Google Scholar 

  29. A. Donnachie, P.V. Landshoff, Phys. Lett. B 595, 393 (2004)

    Article  ADS  Google Scholar 

  30. P.E. Bosted, M.E. Christy, Phys. Rev. C 77, 065206 (2008)

    Article  ADS  Google Scholar 

  31. M.E. Christy, P.E. Bosted, Phys. Rev. C 81, 055213 (2010)

    Article  ADS  Google Scholar 

  32. R.J. Hill, G. Paz, Phys. Rev. D 95(9), 094017 (2017)

    Article  ADS  Google Scholar 

  33. H.R. Weller, M.W. Ahmed, H. Gao, W. Tornow, Y.K. Wu, M. Gai, R. Miskimen, Prog. Part. Nucl. Phys. 62, 257 (2009)

    Article  ADS  Google Scholar 

  34. V. Sokhoyan et al., Eur. Phys. J. A 53(1), 14 (2017)

    Article  ADS  Google Scholar 

  35. E.J. Downie, et al., Proposal for MAMI-A2/04-16 (2016)

  36. J.R.M. Annand, et al., Proposal for MAMI-A2-01/13: Compton Scattering on the He Isotopes with an Active Target (2013)

  37. J.M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74(4), 2852 (2014)

    Article  ADS  Google Scholar 

  38. V. Lensky, F. Hagelstein, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 97(7), 074012 (2018)

    Article  ADS  Google Scholar 

  39. J.C. Bernauer et al., [A1 Collaboration], Phys. Rev. Lett. 105, 242001 (2010)

  40. J.C. Bernauer et al., Phys. Rev. C 90(1), 015206 (2014)

    Article  ADS  Google Scholar 

  41. G. Kubon et al., Phys. Lett. B 524, 26 (2002)

    Article  ADS  Google Scholar 

  42. G. Warren et al., Phys. Rev. Lett. 92, 042301 (2004)

    Article  ADS  Google Scholar 

  43. J.J. Kelly, Phys. Rev. C 70, 068202 (2004)

    Article  ADS  Google Scholar 

  44. V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson, Eur. Phys. J. A 51, 79 (2015)

    Article  ADS  Google Scholar 

  45. Z. Ye, J. Arrington, R.J. Hill, G. Lee, Phys. Lett. B 777, 8 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. K. Borah, R.J. Hill, G. Lee, O. Tomalak, arXiv:2003.13640 [hep-ph]

Download references

Acknowledgements

We acknowledge Vadim Lensky and Marc Vanderhaeghen for useful discussion. This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) through Collaborative Research Center “The Low-Energy Frontier of the Standard Model” (SFB 1044), in part by a NIST precision measurement grant and by the U. S. Department of Energy, Office of Science, Office of High Energy Physics, under Award No. DE-SC0019095, and in part by the Visiting Scholars Award Program of the Universities Research Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Tomalak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomalak, O. Electromagnetic proton–neutron mass difference. Eur. Phys. J. Plus 135, 411 (2020). https://doi.org/10.1140/epjp/s13360-020-00413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00413-9

Navigation