Skip to main content
Log in

Decuplet baryons in nuclear and hyperonic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Masses and the magnetic moments of baryon decuplet are evaluated in the symmetric nuclear and hyperonic matter at finite temperature using a chiral SU(3) quark mean field model approach. The decuplet baryon masses considerably decrease with the rise in the baryonic density of the medium. With the increase in strangeness (more number of hyperons as compared to nucleons) fraction, the non-strange baryons show an increase in their masses, whereas the strange baryons show a decrease. The contributions coming from the valence quarks, quark sea and the orbital angular momentum of the quark sea have been considered to calculate net magnetic moment. The magnetic moments of decuplet baryons are found to show a considerable increase with the baryonic density of the medium since constituent quark magnetic moment and the quark spin polarizations show significant variation in the nuclear medium especially in the low temperature and baryonic density regime. The increase is however quantitatively less as compared to the case of octet baryon members. With the inclusion of hyperons along with nucleons, the non-strange baryons show a decrease in the magnitude of their effective magnetic moments, whereas the strange baryons show an increase. The strangeness fraction of the medium is found to largely affect the valence quark magnetic moment and quark sea magnetic moment of the baryons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. T.M. Aliev, V.S. Zamiralov, Adv. High Energy Phys. 2015, 406875 (2015)

    Google Scholar 

  2. S.T. Hong, Phys. Rev. D 76, 094029 (2007)

    ADS  Google Scholar 

  3. S. Coleman, S.L. Glashow, Phys. Rev. Lett. 6, 423 (1961)

    ADS  Google Scholar 

  4. A. Kaur, A. Upadhyay, Eur. Phys. J. A. 52, 105 (2016)

    ADS  Google Scholar 

  5. F. Schlumpf, Phys. Rev. D 48, 4478 (1993)

    ADS  Google Scholar 

  6. W.R.B. de Araujo et al., Braz. J. Phys. 34, 871 (2004)

    ADS  Google Scholar 

  7. E.J. Hackett-Jones, D.B. Leinweber, A.W. Thomas, Phys. Lett. B 489, 143 (2000)

    ADS  Google Scholar 

  8. J.G. Contreras, R. Huerta, Revista Mxicana De Fisica 50, 490 (2004)

    ADS  Google Scholar 

  9. H.E. Jun, D. Yu-Bing, Commun. Theor. Phys. 43, 139 (2005)

    ADS  Google Scholar 

  10. L.K. Sharma, C. Mai, J. Sci. 34, 13 (2007)

    Google Scholar 

  11. S. Sahu, Revista Mxicana De Fisica 48, 48 (2002)

    ADS  Google Scholar 

  12. J.G. Contreras, R. Huerta, L.R. Quintero, Revista Mxicana De Fisica 50, 490 (2004)

    ADS  Google Scholar 

  13. P.C. Petersen et al., Phys. Rev. Lett. 57, 949 (1986)

    ADS  Google Scholar 

  14. M.D. Slaughter, Phys. Rev. C 82, 015208 (2010)

    ADS  Google Scholar 

  15. C. Amsler et al., Phys. Lett. B 667, 1 (2008). also 2009 partial update for the 2010 edition

    ADS  Google Scholar 

  16. H.T. Diehl et al., Phys. Rev. Lett. 67, 804 (1991)

    ADS  Google Scholar 

  17. N.B. Wallace et al., Phys. Rev. Lett. 74, 3732 (1995)

    ADS  Google Scholar 

  18. A. Bosshard et al., Phys. Rev. D 44, 1962 (1991)

    ADS  Google Scholar 

  19. T.M. Aliev, M. Savci, Phys. Rev. D 90, 116006 (2014)

    ADS  Google Scholar 

  20. B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)

    ADS  Google Scholar 

  21. M. Kotulla et al., Phys. Rev. Lett. 89, 272001 (2002)

    Google Scholar 

  22. M. Kotulla, Prog. Part. Nucl. Phys. 61, 147 (2008)

    ADS  Google Scholar 

  23. V. Punjabi et al., Phys. Rev. C 71, 055202 (2005)

    ADS  Google Scholar 

  24. X. Song, V. Gupta, Phys. Rev. D 49, 2211 (1994)

    ADS  Google Scholar 

  25. M.D. Slaughter, Phys. Rev. D 84, 071303 (2011)

    ADS  Google Scholar 

  26. J. Linde, T. Ohlsson, H. Snellman, Phys. Rev. D 57, 452 (1998)

    ADS  Google Scholar 

  27. H. Dahiya, M. Gupta, Phys. Rev. D 67, 114015 (2003)

    ADS  Google Scholar 

  28. I.S. Sogami, N. Oh’yamaguchi, Phys. Rev. Lett. 54, 2295 (1985)

    ADS  Google Scholar 

  29. F. Schlumpf, Phys. Rev. D 48, 4478 (1993)

    ADS  Google Scholar 

  30. G. Ramalho, K. Tsushima, F. Gross, Phys. Rev. D 80, 033004 (2009)

    ADS  Google Scholar 

  31. F.X. Lee, Phys. Rev. D 57, 1801 (1998)

    ADS  Google Scholar 

  32. S.L. Zhu, W.Y.P. Hwang, Z.S.P. Yang, Phys. Rev. D 57, 1527 (1998)

    ADS  Google Scholar 

  33. A. Iqubal, M. Dey, J. Dey, Phys. Lett. B 477, 125 (2000)

    ADS  Google Scholar 

  34. T.M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D 62, 053012 (2000)

    ADS  Google Scholar 

  35. B. Schwesinger, H. Weigel, Nucl. Phys. A 540, 461 (1992)

    ADS  Google Scholar 

  36. Y. Oh, Phys. Rev. D 75, 074002 (2007)

    ADS  Google Scholar 

  37. B.S. Bains, R.C. Verma, Phys. Rev. D 66, 114008 (2002)

    ADS  Google Scholar 

  38. R. Dhir, R.C. Verma, Eur. Phys. J. A 42, 243 (2009)

    ADS  Google Scholar 

  39. R. Flores-Mendieta, Phys. Rev. D 80, 094014 (2009)

    ADS  Google Scholar 

  40. L.S. Geng, J.M. Camalich, M.J.V. Vacas, Phys. Rev. D 80, 034027 (2009)

    ADS  Google Scholar 

  41. T. Ledwig, A. Silva, M. Vanderhaeghen, Phys. Rev. D 79, 094025 (2009)

    ADS  Google Scholar 

  42. H.-C. Kim, M. Praszalowicz, K. Goeke, Phys. Rev. D 57, 2859 (1998)

    ADS  Google Scholar 

  43. G.S. Yang, H.-C. Kim, M. Praszalowicz, K. Goeke, Phys. Rev. D 70, 114002 (2004)

    ADS  Google Scholar 

  44. S. Boinepalli, D.B. Leinweber, P.J. Moran, A.G. Williams, J.M. Zanotti, J.B. Zhang, Phys. Rev. D 80, 054505 (2009)

    ADS  Google Scholar 

  45. C. Aubin, K. Orginos, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 79, 051502 (2009)

    ADS  Google Scholar 

  46. P.E. Shanahan et al., Phys. Rev. D 89, 074511 (2014)

    ADS  Google Scholar 

  47. F.X. Lee, R. Kelly, L. Zhou, W. Wilcox, Phys. Lett. B 627, 71 (2005)

    ADS  Google Scholar 

  48. V. Friese, Nucl. Phys. A 774, 377 (2005)

    ADS  Google Scholar 

  49. http://www.gsi.de/fair/index.html. Accessed 12 July 2019

  50. W. Zhan et al., Int. J. Mod. Phys. E 15, 1941 (2006)

    ADS  Google Scholar 

  51. Y. Yano, Nucl. Instrum. Methods B 261, 1009 (2007)

    ADS  Google Scholar 

  52. http://www.ganil.spiral2.eu/research/developments/spiral2/. Accessed 12 July 2019

  53. Whitepapers of the 2007 NSAC Long Range Plan Town Meetings, January 2007 Chicago. http://dnp.aps.org. Accessed 12 July 2019

  54. K. Azizi, G. Bozkir, Eur. Phys. J. C 76, 521 (2016)

    ADS  Google Scholar 

  55. C.Y. Ryu, K.S. Kim, Phys. Rev. C 82, 025804 (2010)

    ADS  Google Scholar 

  56. C.Y. Ryu, M.K. Cheoun, C.H. Hyun, J. Korean Phys. Soc. 54, 1448 (2009)

    ADS  Google Scholar 

  57. H. Singh, A. Kumar, H. Dahiya, Chin. Phys. C 41, 094104 (2017)

    ADS  Google Scholar 

  58. H. Singh, A. Kumar, H. Dahiya, Eur. Phys. J. Plus 134, 128 (2019)

    Google Scholar 

  59. H. Singh, A. Kumar, H. Dahiya, Eur. Phys. J. A 54, 120 (2018)

    ADS  Google Scholar 

  60. R.J. Furnstahl, B.D. Serot, Phys. Rev. C 41, 262 (1990)

    ADS  Google Scholar 

  61. P. Wang, Z. Zong-Ye, Y. You-Wen, Commun. Theor. Phys. 36, 71 (2001)

    ADS  Google Scholar 

  62. P. Wang et al., Phys. Rev. C 70, 015202 (2004)

    ADS  Google Scholar 

  63. P. Wang, Z.Y. Song et al., Nucl. Phys. A 688, 791 (2001)

    ADS  Google Scholar 

  64. P. Wang et al., Nucl. Phys. A 744, 273 (2004)

    ADS  Google Scholar 

  65. H. Toki, U. Meyer, A. Faessler, R. Brockmann, Phys. Rev. C 58, 3749 (1998)

    ADS  Google Scholar 

  66. P. Wang et al., Phys. Rev. C 70, 055204 (2004)

    ADS  Google Scholar 

  67. N. Barik, B.K. Dash, Phys. Rev. D 31, 7 (1985)

    Google Scholar 

  68. N. Barik et al., Phys. Rev. C 88, 015206 (2013)

    ADS  Google Scholar 

  69. S. Weinberg, Physica A 96, 327 (1979)

    ADS  Google Scholar 

  70. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    ADS  Google Scholar 

  71. T.P. Cheng, L.F. Li, Phys. Rev. D 57, 344 (1998)

    ADS  Google Scholar 

  72. T.P. Cheng, L.F. Li, Phys. Rev. Lett. 80, 2789 (1998)

    ADS  Google Scholar 

  73. H.Q. Song, R.K. Su, Phys. Lett. B 358, 179 (1995)

    ADS  Google Scholar 

  74. A. Gridhar, H. Dahiya, M. Randhawa, Phys. Rev. D 92(3), 033012 (2015)

    ADS  Google Scholar 

  75. L.F. Li, T.P. Cheng, arxiv:hep-ph/9709293

  76. T.P. Cheng, L.F. Li, Phys. Rev. Lett. 74, 2872 (1995)

    ADS  Google Scholar 

  77. New Muon Collaboration, P. Amaudruz, et al., Phys. Rev. Lett. 66, 2712 (1991)

  78. T.P. Cheng, L.F. Li, Phys. Rev. Lett. 74, 2872 (1995)

    ADS  Google Scholar 

  79. H. Dahiya, M. Gupta, Phys. Rev. D 64, 014013 (2001)

    ADS  Google Scholar 

  80. I.S. Sogami, N. Oh’yamaguchi, Phys. Rev. Lett. 54, 2295 (1985)

    ADS  Google Scholar 

  81. K.-T. Chao, Phys. Rev. D 41, 920 (1990)

    ADS  Google Scholar 

  82. M. Gupta, J. Phys. G 16, L 213 (1990)

    ADS  Google Scholar 

  83. M. Abu-Shady, A.K. Abu-Nab, Am. J. Phys. Appl. 46, 1 (2014)

    Google Scholar 

  84. E.E. Jenkins, A.V. Manohar, Phys. Lett. B 335, 452 (1994)

    ADS  Google Scholar 

  85. A.J. Buchmann, J.A. Hester, R.F. Lebed, Phys. Rev. D 66, 056002 (2002)

    ADS  Google Scholar 

  86. A.J. Buchmann, R.F. Lebed, Phys. Rev. D 67, 016002 (2003)

    ADS  Google Scholar 

  87. M. Gupta, N. Kaur, Phys. Rev. D 28, 534 (1983)

    ADS  Google Scholar 

  88. M. Karliner, H.J. Lipkin, Phys. Lett. B 650, 185 (2007)

    ADS  Google Scholar 

  89. R.C. Verma, M.P. Khanna, Prog. Theor. Phys. 77, 1019 (1987)

    ADS  Google Scholar 

  90. K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002)

    ADS  Google Scholar 

  91. R. Flores-Mendieta, Phys. Rev. D 80, 094014 (2009)

    ADS  Google Scholar 

  92. L.S. Geng, J.M. Camalich, M.J.V. Vacas, Phys. Rev. D 80, 034027 (2009)

    ADS  Google Scholar 

  93. T. Ledwig, A. Silva, M. Vanderhaeghen, Phys. Rev. D 79, 094025 (2009)

    ADS  Google Scholar 

  94. M.A. Luty, J. March-Russell, M.J. White, Phys. Rev. D 51, 2332 (1995)

    ADS  Google Scholar 

  95. A.J. Buchmann, E. Hernandez, A. Faessler, Nucl. Phys. A 569, 661 (1994)

    ADS  Google Scholar 

  96. G. Wagner, A.J. Buchmann, A. Faessler, Phys. Lett. B 359, 288 (1995)

    ADS  Google Scholar 

  97. A.J. Buchmann, E. Her-nandez, A. Faessler, Phys. Rev. C 55, 448 (1997)

    ADS  Google Scholar 

  98. G. Wagner, A.J. Buchmann, A. Faessler, Phys. Rev. C 58, 3666 (1998)

    ADS  Google Scholar 

  99. G. Wagner, A.J. Buchmann, A. Faessler, J. Phys. G 26, 267 (2000)

    ADS  Google Scholar 

  100. A.J. Buchmann, E.M. Henley, Phys. Rev. C 63, 015202 (2000)

    ADS  Google Scholar 

  101. A.J. Buchmann, Phys. Rev. Lett. 93, 212301 (2004)

    ADS  Google Scholar 

  102. A. Mishra et al., Eur. Phys. J. A 41, 205 (2009)

    ADS  Google Scholar 

  103. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 59, 411 (1999)

    ADS  Google Scholar 

  104. P. Wang, V.E. Lyubovitskij, T. Gutsche, A. Faessler, Phys. Rev. C 67, 015210 (2003)

    ADS  Google Scholar 

  105. G.S. Yang, H.C. Kim, Phys. Lett. B 785, 434 (2018)

    ADS  Google Scholar 

  106. T. Shupian, X. Yuan, High Energy Phys. Nucl. Phys. 33, 1197 (2001)

    Google Scholar 

  107. M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018)

    ADS  Google Scholar 

  108. L. Yu et al., Phys. Rev. D 73, 114001 (2006)

    ADS  Google Scholar 

  109. P. Wang et al., Phys. Rev. C 72, 045801 (2005)

    ADS  Google Scholar 

  110. S. Theberge, A.W. Thomas, Phys. Rev. D 25, 284 (1982)

    ADS  Google Scholar 

  111. J. Cohen, H.J. Weber, Phys. Lett. B 165, 229 (1985)

    ADS  Google Scholar 

  112. https://www.bnl.gov/rhic. Accessed 12 July 2019

  113. https://nica.jinr.ru. Accessed 12 July 2019

  114. https://home.cern/about/experiments/base. Accessed 12 July 2019

  115. B.L. Abelev et al., Phys. Rev. C 78, 044906 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Kumar, A. & Dahiya, H. Decuplet baryons in nuclear and hyperonic medium. Eur. Phys. J. Plus 135, 422 (2020). https://doi.org/10.1140/epjp/s13360-020-00397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00397-6

Navigation