Skip to main content
Log in

Thermodynamic black hole with modified Chaplygin gas as a heat engine

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We assume the negative cosmological constant as a thermodynamic pressure and the anti-de Sitter (AdS) black hole thermodynamics with modified Chaplygin gas. We write the mass, volume, entropy and temperature of the black hole due to the thermodynamic system. We find a new solution of the Einstein’s field equations of AdS black hole with modified Chaplygin gas as a thermodynamic system. We examine the weak, strong and dominant energy conditions for the source fluid of black hole. We also show that the thermodynamic black hole with Chaplygin gas can be considered as a heat engine, and then we calculate work done and its efficiency by this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)

    ADS  MathSciNet  Google Scholar 

  2. S. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983)

    ADS  Google Scholar 

  3. A. Chamblin, R. Emparan, C. Johnson, R. Myers, Phys. Rev. D 60, 064018 (1999)

    ADS  MathSciNet  Google Scholar 

  4. A. Chamblin, R. Emparan, C. Johnson, R. Myers, Phys. Rev. D 60, 104026 (1999)

    ADS  MathSciNet  Google Scholar 

  5. M. Cvetic, S. Gubser, JHEP 9904, 024 (1999)

    ADS  Google Scholar 

  6. C. Niu, Y. Tian, X.-N. Wu, Phys. Rev. D 85, 024017 (2012)

    ADS  Google Scholar 

  7. D. Kubiznak, R.B. Mann, arXiv: 1404.2126 [gr-qc]

  8. A. Rajagopal, D. Kubiznak, R.B. Mann, Phys. Lett. B 737, 277 (2014)

    ADS  MathSciNet  Google Scholar 

  9. S.H. Hendi, A. Nemati, K. Lin, M. Jamil, Eur. Phys. J. C 80, 296 (2020)

    ADS  Google Scholar 

  10. S.H. Hendi, S. Panahiyan, B.E. Panah, M. Jamil, Chin. Phys. C 43, 113106 (2019)

    ADS  Google Scholar 

  11. T. Delsate, R. Mann, JHEP 02, 070 (2015)

    ADS  Google Scholar 

  12. M.R. Setare, H. Adami, Phys. Rev. D 91, 084014 (2015)

    ADS  MathSciNet  Google Scholar 

  13. D. Kubiznak, R.B. Mann, JHEP 1207, 033 (2012)

    ADS  Google Scholar 

  14. S. Gunasekaran, R.B. Mann, D. Kubiznak, JHEP 1211, 110 (2012)

    ADS  Google Scholar 

  15. M.M. Caldarelli, G. Cognola, D. Klemm, Class. Quant. Grav. 17, 399 (2000)

    ADS  Google Scholar 

  16. J. Creighton, R.B. Mann, Phys. Rev. D 52, 4569 (1995)

    ADS  MathSciNet  Google Scholar 

  17. M. Jamil, Eur. Phys. J. C 62, 609 (2009)

    ADS  Google Scholar 

  18. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quant. Grav. 21, 5609 (2004)

    ADS  Google Scholar 

  19. C.V. Johnson, Class. Quant. Grav. 31, 205002 (2014)

    ADS  Google Scholar 

  20. C.V. Johnson, Class. Quant. Grav. 33, 215009 (2016)

    ADS  Google Scholar 

  21. C.V. Johnson, Class. Quant. Grav. 33, 135001 (2016)

    ADS  Google Scholar 

  22. C.V. Johnson, Entropy 18, 120 (2016)

    ADS  Google Scholar 

  23. C. Bhamidipati, P.K. Yerra, Eur. Phys. J. C 77, 534 (2017)

    ADS  Google Scholar 

  24. M. Zhang, W.-B. Liu, Int. J. Theor. Phys. 55, 5136 (2016)

    Google Scholar 

  25. J. Sadeghi, Int. J. Theor. Phys. 56, 3387 (2017)

    Google Scholar 

  26. A. Chakraborty, C.V. Johnson, Int. J. Mod. Phys. D 28, 1950012 (2019)

    Google Scholar 

  27. J.-X. Mo, F. Liang, G.-Q. Li, JHEP 1703, 010 (2017)

    ADS  Google Scholar 

  28. R.A. Hennigar, F. McCarthy, A. Ballon, R.B. Mann, Class. Quant. Grav. 34, 175005 (2017)

    ADS  Google Scholar 

  29. H. Liu, X.-H. Meng, Eur. Phys. J. C 77, 556 (2017)

    ADS  Google Scholar 

  30. C.V. Johnson, Class. Quant. Grav. 35, 045001 (2018)

    ADS  Google Scholar 

  31. H. Xu, Y. Sun, L. Zhao, Int. J. Mod. Phys. D 26, 1750151 (2017)

    ADS  Google Scholar 

  32. J.-X. Mo, G.-Q. Li, JHEP 1805, 122 (2018)

    ADS  Google Scholar 

  33. S.H. Hendi, B.E. Panah, S. Panahiyan, H. Liu, X.-H. Meng, Phys. Lett. B 781, 40 (2018)

    ADS  Google Scholar 

  34. S.-W. Wei, Y.-X. Liu, Nucl. Phys. B 946, 114700 (2019)

    Google Scholar 

  35. A. Chakraborty, C.V. Johnson, Int. J. Mod. Phys. D 28, 1950006 (2019)

    Google Scholar 

  36. L.-Q. Fang, X.-M. Kuang, Sci. China Phys. Mech. Astron. 61, 080421 (2018)

    ADS  Google Scholar 

  37. J. Zhang, Y. Li, H. Yu, Eur. Phys. J. C 78, 645 (2018)

    ADS  Google Scholar 

  38. F. Rosso, Int. J. Mod. Phys. D 28, 1950030 (2019)

    ADS  Google Scholar 

  39. J.-X. Mo, S.-Q. Lan, Eur. Phys. J. C 78, 666 (2018)

    ADS  Google Scholar 

  40. B.E. Panah, Phys. Lett. B 787, 45 (2018)

    ADS  MathSciNet  Google Scholar 

  41. J.P.M. Graca, I.P. Lobo, V.B. Bezerra, H. Moradpour, Eur. Phys. J. C 78, 823 (2018)

    ADS  Google Scholar 

  42. C.V. Johnson, F. Rosso, Class. Quant. Grav. 36, 015019 (2019)

    ADS  Google Scholar 

  43. S.-Q. Hu, X.-M. Kuang, Sci. China Phys. Mech. Astron. 62, 060411 (2019)

    Google Scholar 

  44. J.F.G. Santos, Eur. Phys. J. Plus 133, 321 (2018)

    Google Scholar 

  45. S. Fernando, Mod. Phys. Lett. A 33, 1850177 (2018)

    ADS  Google Scholar 

  46. J. Zhang, Y. Li, H. Yu, JHEP 02, 144 (2019)

    ADS  Google Scholar 

  47. H. Ghaffarnejad, E. Yaraie, M. Farsam, K. Bamba, Nucl. Phys. B 952, 114941 (2020)

    Google Scholar 

  48. M.R. Setare, H. Adami, Gen. Rel. Grav. 47, 133 (2015)

    ADS  Google Scholar 

  49. D. Kastor, S. Ray, J. Traschen, Class. Quant. Grav. 26, 195011 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Debnath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, U. Thermodynamic black hole with modified Chaplygin gas as a heat engine. Eur. Phys. J. Plus 135, 424 (2020). https://doi.org/10.1140/epjp/s13360-020-00416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00416-6

Navigation