Skip to main content
Log in

Multiplicity dependence of J/\(\psi \) production and QCD dynamics in \(p+p\) collisions at \(\sqrt{s}\) = 13 TeV

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In inelastic \(p+p\) collisions, the interacting objects are quarks and gluons (partons). It is believed that there are multiple interactions between the partons in a single \(p+p\) event. Recent studies of multiplicity dependence of particle production in \(p+p\) collisions have gathered considerable interest in the scientific community. According to several theoretical calculations, multiple gluon participation in hadronic collisions is the cause of high-multiplicity events. If the interaction is hard enough (large \(p_{\mathrm{T}}\) transfer), the semi-hard processes of multiple interactions of partons might also lead to the production of heavy particles like J/\(\psi \). At the LHC, an approximately linear increase of the relative J/\(\psi \) yield with charged particle multiplicity is observed in \(p+p\) collisions. In the present work, we have studied the contribution of quarks and gluons to the multiplicity dependence of J/\(\psi \) production using pQCD inspired event generator, PYTHIA8 tune 4C, in \(p+p\) collisions at \(\sqrt{s} =\)13 TeV by investigating relative J/\(\psi \) yield and relative \(\langle p_{\mathrm{T}} \rangle \) of J/\(\psi \) as a function of charged particle multiplicity for different hard-QCD processes. We have estimated a newly defined ratio, \(r_{pp} = {\langle p_{\mathrm{T}}^{2} \rangle }_{i}/{\langle p_{\mathrm{T}}^{2} \rangle }_{\mathrm{MB}}\), to gain understanding of J/\(\psi \) production in high-multiplicity \(p+p\) collisions. For the first time we attempt to study the nuclear modification factor-like observables (\(R_{\mathrm{pp}}\) and \(R_{\mathrm{cp}}\)) to describe the QCD medium formed in high-multiplicity \(p+p\) collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Raw simulated data were generated at the LHC grid computing facility at Variable Energy Cyclotron Center, Kolkata. Some of the derived data supporting the findings of this study are available within the article and other can be obtained from the corresponding author on request.]

Notes

  1. J/\(\psi \)from all Hard-QCD processes: It includes all the NRQCD processes (LO processes) such as gluon fusion, quark annihilation, flavor excitation and the semi-hard MPIs, which themselves are governed by NRQCD. For color-octet states, one additional gluon is emitted in the transition to the physical color-singlet state. Production of any \(^3S_1\), \(^3P_J\) and \(^3D_J\) states via color-singlet and color-octet mechanisms are included through the Onia process in PYTHIA8. In order to have quarkonia (here charmonia is of our interest) production, the Charmonium:all flag in PYTHA8 is included, which allows for quarkonia production through the NRQCD framework [27,28,29]. The production of all the states of charmonia is included in PYTHIA8 and their decay products make a significant contribution to J/\(\psi \). The heavier charmonium states can decay into a J/\(\psi \) meson by emitting photons or pions which contribute to the inclusive J/\(\psi \) production.

References

  1. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  2. A. Andronic et al., Eur. Phys. J. C 76, 107 (2016)

    Article  ADS  Google Scholar 

  3. R. Vogt, Nucl. Phys. A 982, 751 (2019)

    Article  ADS  Google Scholar 

  4. Y.Q. Ma, R. Vogt, Phys. Rev. D 94, 114029 (2016)

    Article  ADS  Google Scholar 

  5. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011)

    Article  ADS  Google Scholar 

  6. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 108, 172002 (2012)

    Article  ADS  Google Scholar 

  7. V. Cheung, R. Vogt, Phys. Rev. D 98, 114029 (2018)

    Article  ADS  Google Scholar 

  8. V. Cheung, R. Vogt, Phys. Rev. D 96, 054014 (2017)

    Article  ADS  Google Scholar 

  9. X. Zhao, R. Rapp, Phys. Lett. B 664, 253 (2008)

    Article  ADS  Google Scholar 

  10. L. Grandchamp, R. Rapp, Phys. Lett. B 523, 60 (2001)

    Article  ADS  Google Scholar 

  11. G. Aad et al., [ATLAS Collaboration]. JHEP 1404, 172 (2014)

  12. M. Aaboud et al., [ATLAS Collaboration]. Eur. Phys. J. C 77, 76 (2017)

  13. S. Acharya et al., [ALICE Collaboration]. Eur. Phys. J. C 78, 562 (2018)

  14. A. Batista Camejo, PhD Thesis, Université Clermont Auvergne, (2017). https://tel.archives-ouvertes.fr/tel-01610078/document

  15. B. Abelev et al., [ALICE Collaboration]. Phys. Lett. B 712, 165 (2012)

  16. S.G. Weber, Nucl. Phys. A 967, 333 (2017)

    Article  ADS  Google Scholar 

  17. D. Thakur [ALICE Collaboration], PoS HardProbes 2018, 164 (2019)

  18. D.K. Srivastava, S.A. Bass, R. Chatterjee, Phys. Rev. C 96, 064906 (2017)

    Article  ADS  Google Scholar 

  19. S.G. Weber, A. Dubla, A. Andronic, A. Morsch, Eur. Phys. J. C 79, 36 (2019)

    Article  ADS  Google Scholar 

  20. E.G. Ferreiro, C. Pajares, Phys. Rev. C 86, 034903 (2012)

    Article  ADS  Google Scholar 

  21. B.Z. Kopeliovich, H.J. Pirner, I.K. Potashnikova, K. Reygers, I. Schmidt, Phys. Rev. D 88, 116002 (2013)

    Article  ADS  Google Scholar 

  22. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008)

    Article  ADS  Google Scholar 

  23. R. Corke, T. Sjostrand, JHEP 1001, 035 (2010)

    Article  ADS  Google Scholar 

  24. E. Cuautle, S. Iga, A. Ortiz, G. Paić, J. Phys. Conf. Ser. 730, 012009 (2016)

    Article  Google Scholar 

  25. D. Thakur, S. De, R. Sahoo, S. Dansana, Phys. Rev. D 97, 094002 (2018)

    Article  ADS  Google Scholar 

  26. M. Gluck, J.F. Owens, E. Reya, Phys. Rev. D 17, 2324 (1978)

    Article  ADS  Google Scholar 

  27. H.S. Shao, Comput. Phys. Commun. 184, 2562 (2013)

    Article  ADS  Google Scholar 

  28. W.E. Caswell, G.P. Lepage, Phys. Lett. 167B, 437 (1986)

    Article  ADS  Google Scholar 

  29. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995)

    Article  ADS  Google Scholar 

  30. C. Andrei [ALICE Collaboration], Nucl. Phys. A 931, 888 (2014)

  31. S. Porteboeuf-Houssais, DESY-PROC-2012-03

  32. J. Adam et al., [ALICE Collaboration]. Nature Phys. 13, 535 (2017)

  33. B. Alver et al., [PHOBOS Collaboration]. Phys. Rev. C 83, 024913 (2011)

  34. V. Khachatryan et al., [CMS Collaboration]. JHEP 1009, 091 (2010)

  35. E.V. Shuryak, Phys. Rept. 61, 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  36. J. Adams et al., [STAR Collaboration]. Nucl. Phys. A 757, 102 (2005)

  37. M.L. Mangano, B. Nachman, Eur. Phys. J. C 78, 343 (2018)

    Article  ADS  Google Scholar 

  38. K. Zhou, N. Xu, Z. Xu, P. Zhuang, Phys. Rev. C 89, 054911 (2014)

    Article  ADS  Google Scholar 

  39. R. Corke, T. Sjostrand, JHEP 1103, 032 (2011)

    Article  ADS  Google Scholar 

  40. T. Sjostrand, Adv. Ser. Direct. High Energy Phys. 29, 191 (2018)

    Article  Google Scholar 

  41. S. Acharya et al., [ALICE Collaboration]. Eur. Phys. J. C 77, 392 (2017)

  42. D. Adamová et al., [ALICE Collaboration]. Phys. Lett. B 776, 91 (2018)

  43. K. Zhou, N. Xu, P. Zhuang, Nucl. Phys. A 834, 249C (2010)

    Article  ADS  Google Scholar 

  44. Xl Zhu, Pf Zhuang, N. Xu, Phys. Lett. B 607, 107 (2005)

    Article  ADS  Google Scholar 

  45. S. Zhang, L. Zhou, Y. Zhang, M. Zhang, C. Li, M. Shao, Y. Sun, Z. Tang, Nucl. Sci. Tech. 29, 136 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

DT acknowledges UGC, New Delhi, Government of India for financial supports. SD and RNS acknowledge the financial supports from ALICE Project No. SR/MF/PS-01/2014-IITI(G) of Department of Science & Technology, Government of India. The authors gratefully acknowledge Professor Leif Lönnblad for valuable discussions. This research used resources of the LHC grid computing facility at Variable Energy Cyclotron Center, Kolkata. We would like to thank Prof. B.K. Nandi for carefully reading the final version of the manuscript and providing useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by Ralf Rapp

Appendix

Appendix

For completeness, we have listed the numerical values of relative yield (Table 1) and relative \(\langle p_{\mathrm{T}} \rangle \) (Table 2) of J/\(\psi \) for HardQCD, gg\(\rightarrow C\) and q\({\bar{q}}\rightarrow C\) processes as a function of multiplicity (\(N_{\mathrm{ch}}\)-bin) along with their uncertainties.

Table 1 Relative yield of J/\(\psi \)\((N_{\mathrm{J/\psi }}^{i}/N_{\mathrm{J/\psi }}^{\mathrm{MB}})\) for hard QCD, gg\(\rightarrow C\), q\({\bar{q}}\rightarrow C\) processes as a function of charged particle multiplicity in \(p+p\) collision at \(\sqrt{s}\) = 13 TeV using PYTHIA
Table 2 Relative \(\langle p_{\mathrm{T}} \rangle \) of J/\(\psi \)\((\langle p_{\mathrm{T}} \rangle _{\mathrm{J/\psi }}^{i}/\langle p_{\mathrm{T}} \rangle _{\mathrm{J/\psi }}^{\mathrm{MB}})\) as a function of charged particle multiplicity for hard QCD, gg\(\rightarrow C\), q\({\bar{q}}\rightarrow C\) processes in \(p+p\) collision at \(\sqrt{s}\)  = 13 TeV using PYTHIA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, S., Thakur, D., De, S. et al. Multiplicity dependence of J/\(\psi \) production and QCD dynamics in \(p+p\) collisions at \(\sqrt{s}\) = 13 TeV. Eur. Phys. J. A 56, 134 (2020). https://doi.org/10.1140/epja/s10050-020-00138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00138-4

Navigation