Skip to main content
Log in

Analysis of the reaction cross sections of \(^{15,16}C+^{12}C\) and \(^{15,16}C+^{27}Al\) at intermediate energies using microscopic optical potential and Glauber model

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The reaction cross sections of \(^{15,16}C+^{12}C\) and \(^{15,16}C+^{27}Al\) are calculated at intermediate energies using microscopic complex optical potential (OP) derived from Brueckner G-matrix. Glauber model (GM) with and without in-medium effects are also used for comparison. Different models for the density distributions such as deformed Fermi density, whose deformation parameters and radii are determined by RMF calculations, a harmonic oscillator (HO), harmonic oscillator plus Gaussian (HOG) and two-parameters Fermi (2pF) are used. It is found that \(^{16}C\) can be described by HO, HOG, and 2pF densities with the same matter radius \(\sim \)2.75 fm, while \(^{15}C\) can be described by HOG (\(^{14}C\) core and one neutron in the \(S_{1/2}\) state) with matter radius 2.88 fm, when using the OP in the calculation of the reaction cross section, which indicates the halo structure of \(^{15}C\). Glauber model with in-medium effects predicted matter radius 2.8 fm for both \(^{15}C\) and \(^{16}C\). A clear halo structure is shown in the extracted density distribution of \(^{15}C\) predicted by both the OP and GM models, while for \(^{16}C\) a neutron skin, in the range 0.3-0.4 fm, which is smaller than of \(^{15}C\), is predicted without a long extended tail, as that predicted for \(^{15}C\), which indicates the absence of halo structure for \(^{16}C\), in contrast with most of the other predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Its a theoretical work without data. Only figures.]

References

  1. R. Glauber, in Lectures in Theoretical Physics, edited by W. Brittin, L. Dunham, Vol. 1 (Interscience, New York), p. 315 (1959)

  2. A. Vitturi, F. Zardi, Phys. Rev. C 36, 1404 (1987)

    Article  ADS  Google Scholar 

  3. S.M. Lenzi, A. Vitturi, F. Zardi, Phys. Rev. C 40, 2114 (1989)

    Article  ADS  Google Scholar 

  4. S.K. Charagi, S.K. Gupta, Phys. Rev. C 41, 1610 (1990)

    Article  ADS  Google Scholar 

  5. S.K. Charagi, S.K. Gupta, Phys. Rev. C 46, 1982 (1992)

    Article  ADS  Google Scholar 

  6. S.K. Charagi, S.K. Gupta, Phys. Rev. C 56(1982), 1171 (1997)

    Article  ADS  Google Scholar 

  7. I. Tanihata, J. Phys. G 22, 157 (1996)

    Article  ADS  Google Scholar 

  8. T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)

    Article  ADS  Google Scholar 

  9. T. Suzuki et al., Nucl. Phys. A 658, 313 (1999)

    Article  ADS  Google Scholar 

  10. I. Tanihata et al., Phys. Lett. B 206 (1988)

  11. I. Tanihata et al., Phys. Lett. B 287, 307 (1992)

    Article  ADS  Google Scholar 

  12. H. Simon et al., Phys. Rev. Lett. 83, 496 (1999)

    Article  ADS  Google Scholar 

  13. W. Geithner et al., Phys. Rev. Lett. 83, 3792 (1999)

    Article  ADS  Google Scholar 

  14. D.Q. Fang et al., Phys. Rev. C 61, 064311 (2000)

    Article  ADS  Google Scholar 

  15. A. Ozawa et al., Nucl. Phys. A 693, 32 (2001)

    Article  ADS  Google Scholar 

  16. A. Ozawa et al., Nucl. Phys. A 691, 599

  17. T. Suzuki et al., Phys. Rev. Lett. 89, 012501 (2002)

    Article  ADS  Google Scholar 

  18. Y. Yamaguchi et al., Phys. Rev. C 70, 054320 (2004)

    Article  ADS  Google Scholar 

  19. H.U. ZhengGuo et al., Sci. Chin. Ser. G Phys. Mech. Astron. 51, 781 (2008)

    Article  ADS  Google Scholar 

  20. G.A. Koroleva et al., Phys. Lett. B 780, 200 (2018)

    Article  ADS  Google Scholar 

  21. A. Ozawa et al., Nucl. Instr. Methods. Phys. Res. (NIM) B 247, 155 (2006)

    Article  ADS  Google Scholar 

  22. T. Zheng et al., Nucl. Phys. A 709, 103 (2002)

    Article  ADS  Google Scholar 

  23. D.Q. Fang, Phys. Rev. C 69, 034613 (2004)

    Article  ADS  Google Scholar 

  24. D.T. Tran et al., Phys. Rev. C 94, 064604 (2016)

    Article  ADS  Google Scholar 

  25. H. Du et al., Acta Phys. Polon. B 48, 473 (2017)

    Article  ADS  Google Scholar 

  26. M. Aygun, Pramana. J. Phys. 93 (2019)

  27. R.V. Reid Jr., Ann. Phys. SO 411 (1968)

  28. M. Trefz, A. Faessler, W.H. Dickhoff, ibid A 443, 499 (1985)

    Google Scholar 

  29. N. Ohtsuka, R. Linden, A. Faessler, Phys. Lett. B 199, 325 (1997)

    Article  ADS  Google Scholar 

  30. M. Rashdan, Int. J. Mod. Phys. E 5, 533 (1996)

    Article  ADS  Google Scholar 

  31. M. Rashdan, Phys. Rev. C 88, 024615 (2013)

    Article  ADS  Google Scholar 

  32. M. Rashdan, Phys. Rev. C 91, 054613 (2015)

    Article  ADS  Google Scholar 

  33. T. Izumoto, S. Krewald, A. Faessler, Nucl. Phys. A 341, 319 (1980)

    Article  ADS  Google Scholar 

  34. H. de Vries, C.W. de Jager, C. de Vries, Data Nucl. Data Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  35. K. Minomo et al., Phys. Rev. C 84, 034602 (2011)

    Article  ADS  Google Scholar 

  36. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  37. P.G. Reinhard, Rep. Prog. Phys. 52, 439 (1989)

    Article  ADS  Google Scholar 

  38. P.G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, J. Friedrich, Z. Phys. A 323, 13 (1986)

    ADS  Google Scholar 

  39. M. Stoitsov, P. Ring, D. Vretenar, G.A. Lalazissis, Phys. Rev. C 58, 2086 (1998)

    Article  ADS  Google Scholar 

  40. M. Stoitsov, P. Ring, D. Vretenar, G.A. Lalazissis, Phys. Rev. C 60, 014310 (1999)

    Article  ADS  Google Scholar 

  41. M. Rashdan, Phys. Rev. C 63, 044303 (2001)

    Article  ADS  Google Scholar 

  42. M. Rashdan, IJMPE 21, 1250055 (2012)

    Article  ADS  Google Scholar 

  43. P. Moeller, J.R. Nix, Nucl. Phys. A 536, 20 (1992)

    Article  ADS  Google Scholar 

  44. P.J. Karol, Phys. Rev. C 11, 1203 (1975)

    Article  ADS  Google Scholar 

  45. R.E. Warner et al., Phys. Rev. C 74, 014605 (2006)

    Article  ADS  Google Scholar 

  46. K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  47. I. Tanihata, H. Savajols, R. Kanungod, Prog. Part. Nucl. Phys. 68, 215 (2013)

    Article  ADS  Google Scholar 

  48. G.D. Alkhazov, I.S. Novikov, Y. Shabelski, Int. J. Mod. Phys. E 20, 583 (2011)

    Article  ADS  Google Scholar 

  49. G.D. Alkhazov, A.V. Dobrovolsky et al., Nucl. Phys. A 734, 361 (2004)

    Article  ADS  Google Scholar 

  50. G. Fan, M. Fukuda, W. Xu, P. Qiang-Yan, Chin. Phys. C 34, 1622 (2010)

    Article  ADS  Google Scholar 

  51. Rashdan, S. Sewailem, Phys. Rev. C 99, 034604 (2019)

    Article  ADS  Google Scholar 

  52. C. Xiangzhow et al., Phys. Rev. C 58, 572 (1998)

    Article  ADS  Google Scholar 

  53. B. V. Carlson, The Optical Model, Joint ICTP-IAEA, Workshop on Nuclear Reaction Data for Advanced Reactor Technologies, 3–14 May 2010

  54. M. Rashdan, Phys. Scr. 68, 166 (2003)

    Article  ADS  Google Scholar 

  55. M.N. El-Hammamy, A. Attia, Pramana J. Phys. 90, 66 (2018)

    Article  ADS  Google Scholar 

  56. A. Ismail, L.Y. Cheong, S.A. Makhlof, M. Allosh, IOP Conf. Ser. J. Phys. Conf. Ser. 1123, 012031 (2018)

    Article  Google Scholar 

  57. A. Ismail, L.Y. Cheong, S.A. Makhlof, M. Allosh, Conf. Proc. 1621, 192 (2014)

    ADS  Google Scholar 

  58. Y. Zhang et al., Progr. Theor. Phys. 120, 129 (2008)

    Article  ADS  Google Scholar 

  59. K. Hagino, H. Sagawa, Phys. Rev. C 84, 011303 (2011)

    Article  ADS  Google Scholar 

  60. S. Sasabe et al., Phys. Rev. C 88, 037602 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Pierre Capel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashdan, M. Analysis of the reaction cross sections of \(^{15,16}C+^{12}C\) and \(^{15,16}C+^{27}Al\) at intermediate energies using microscopic optical potential and Glauber model. Eur. Phys. J. A 56, 130 (2020). https://doi.org/10.1140/epja/s10050-020-00139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00139-3

Navigation