Skip to main content
Log in

Effect of Plasma-Electrolytic Polishing on the Corrosion Resistance of Structural Steels after Their Anodic Saturation with Nitrogen, Boron, and Carbon

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstrac

t—The results of plasma-electrolytic polishing of steel specimens after their anodic diffusion saturation with elements, which form interstitial solutions, are considered. The structure and phase composition of the modified layers are studied using the X-ray diffraction analysis and electronic microscopy. The surface roughness and corrosion resistance of specimens in the 3.5% sodium chloride solution are measured. Various morphology of oxide layer is revealed after nitrocarburizing, nitriding, boronizing and borocarburizing of carbon structural steels 20 and 45. The versions of treatment and electrolyte compositions are determined that reduce the surface roughness from 1.00 μm for the control specimen to 0.23 μm after borocarburizing in the solution of boric acid, glycerol and ammonium chloride followed by polishing in the sulfate electrolyte and to 0.40–0.42 μm after nitriding in the ammonia and ammonium chloride solution followed by polishing in the sulfate or chloride electrolyte. It is shown that the corrosion current density of steel 45 can be reduced by almost 4 times after nitriding and polishing in the sulfate or chloride electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yerokhin, A.L., Nie, X., Leyland, A., Matthews A., and Dowey, S.J., Plasma electrolysis for surface engineering, Surf. Coat. Technol., 1999, vol. 122, p. 73.

    Article  CAS  Google Scholar 

  2. Aliofkhazraei, M., Rouhaghdam, A. Sabour, and Gupta, P., Nano-fabrication by cathodic plasma electrolysis, Crit. Rev. Solid.State, 2011, vol. 36, p. 174.

    CAS  Google Scholar 

  3. Parfenov, E.V., Yerokhin, A., Nevyantseva, R.R., Gorbatkov, M.V., Liang, C.-J., and Matthews, A., Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modeling, Surf. Coat. Technol., 2015, vol. 269, p. 2.

    Article  CAS  Google Scholar 

  4. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., Plasma-assisted electrochemical exfoliation of graphite in the pulsed mode, High Energy Chem., 2018, vol. 52, no. 32, p. 272.

    Article  CAS  Google Scholar 

  5. Aliev, M.Kh., Sabour, A., and Taheri, P., Study of corrosion protection of different stainless steels by nanocrystalline plasma electrolysis, Prot. Met. Phys. Chem., 2008, vol. 44, no. 4, p. 402.

    Article  CAS  Google Scholar 

  6. Kurbanbekov, Sh.R., Modification of structure and mechanical properties of steel 12Kh18N10T surface layers by plasma electrolytic treatment, PhD Dissertation, Ust-Kamenogorsk: D. Serikbayev East Kazakhstan State Technical University, 2014.

  7. Kusmanov, S.A., D’yakov, I.G., and Belkin, P.N., Teoreticheskie osnovy elektrolitno-plazmennogo nagreva i ego primenenie dlya diffuzionnogo nasyshcheniya metallov i splavov (Theoretical Basis of Electrolytic Plasma Heating and Its Application for Diffusion Saturation of Metals and Alloys), Kostroma: Kostroma State University, 2017.

  8. Chernova, G.P., Bogdashkina, N.L., Parshutin, V.V., Revenko, V.G., Tomashov, N.D., Belkin, P.N., Pasinkovskii, E.A., and Faktorovich, A.A., Electrochemical and corrosion behavior of 40Kh steel nitrated in “electrolyte plasma”, Zashch. Met., 1984, vol. 20, no. 3, p. 408.

    CAS  Google Scholar 

  9. Andrei, V., Vlaicu, Gh., Fulger, M., Ducu, C., Diaconu, C., Oncioiu, Gh., Andrei, E., Bahrim, M., and Gheboianu, A., Chemical and structural modifications induced in structural materials by electrochemical processes, Romanian Reports in Physics, 2009, vol. 61, no. 1, p. 95.

    CAS  Google Scholar 

  10. Revenko, V.G., Chernova, G.P., Parshutin, V.V., Bogdashkina, N.L., Tomashov, N.D. Belkin, P.N., and Pasinkovskii, E.A., Effect of electrolytic nitriding on the protective properties of conversion coatings, Zashch. Met., 1988, vol. 24, no. 2, p. 204.

    CAS  Google Scholar 

  11. Wu, J., Xue, W., Wang, B., Jin, X., Du, J., and Li, Y., Characterization of carburized layer on T8 steel fabricated by cathodic plasma electrolysis, Surf. Coat. Technol., 2014, vol. 245, p. 9.

    Article  CAS  Google Scholar 

  12. Kusmanov, S.A., Grishina, E.P., Belkin, P.N., Kusmanova, Yu.V., and Kudryakova, N.O., Raising the corrosion resistance of low-carbon steels by electrolytic-plasma saturation with nitrogen and carbon, Met. Sci. Heat Treat., 2017, vol. 59, no. 1, p. 117.

    Article  CAS  Google Scholar 

  13. Tavakoli, H., Mousavi Khoie, S.M., Rasooli, F., Marashi, S.P.H., and Momeni, F., Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing, Surf. Coat. Technol., 2015, vol. 276, p. 529.

    Article  CAS  Google Scholar 

  14. Taheri, P., Dehghanian, Ch., Aliofkhazraei, M., and Rouhaghdam, A.S., Evaluation of nanocrystalline microstructure, abrasion, and corrosion properties of carbon steel treated by plasma electrolytic boriding, Plasma Process. Polym., 2007, vol. 4, p. S711.

    Article  Google Scholar 

  15. Alavi, S.H., Dehghanian, C., and Taheri, P., Investigation of corrosion behaviour of carbon steel coated by pulsed plasma electrolytic boronising technique in 35 wt % NaCl aqueous solution, Surf. Eng., 2011, vol. 27, p. 509.

    Article  CAS  Google Scholar 

  16. Wang, B., Xue, W., Wu, J., Jin, X., Hua, M., and Wu, Z.L., Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing, J. Alloys Compd., 2013, vol. 578, p. 162.

    Article  CAS  Google Scholar 

  17. Kusmanov, S.A., Tambovskii, I.V., Naumov, A.R., D’yakov, I.G., Kolesnikova, I.A., and Belkin, P.N., Anodic electrolytic-plasma borocarburizing of low-carbon steel, Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 3, p. 488.

    Article  CAS  Google Scholar 

  18. Resner, E., Marks, G., Zaitsev, V.A., and Sukhotin, A.M., Electrode wear in treatment of low-carbon steel in electrolytic plasma during anodic process, Elektron. Obrab. Mater., 1983, no. 3, p. 59.

  19. Smyslova, M.K., Tamindarov, D.R., and Samarkina, A.B., Effect of plasma-electrolytic treatment on the physicochemical surface conditions and mechanical properties of steam turbine blades made of 20Kh13 steel, Aerospace Eng. Technol., 2011, vol. 84, no. 7, p. 25.

    Google Scholar 

  20. Smirnov, A.A., Kusmanov, S.A., Kusmanova, I.A., and Belkin, P.N., Effect of electrolyte depletion on the characteristics of the anodic plasma electrolytic nitriding of a VT22 titanium alloy, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 5, p. 413.

    Article  Google Scholar 

  21. Ivanova, N.P., Sin’kevich, Yu.V., Sheleg, V.K., and Yankovskii, I.N., Mechanism of anodic dissolution of corrosion-resistant and structural carbon steels under conditions of electropulse polishing, Science & Technique, 2013, no. 1, p. 24.

  22. Chirkunova, N.V., Volenko, A.P., Mulyukov, R.R., and Shlom, M.V., Improving the technology of plasma-electrolytic polishing of austenitic stainless steel, Lett. Mater., 2013, vol. 3, no. 4, p. 309.

    Article  Google Scholar 

  23. Veselovskii, A.P., Kyubarsep, S.V., and Ushomirskaya, L.A., Features of plasma electrolytic treatment of metals in non-toxic electrolytes, Metalloobrab., 2002, no. 6, p. 29.

Download references

Funding

The work was supported by the Russian Scientific Foundation, project no. 18-79-10094, for Kostroma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kusmanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Kabanova

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusmanov, S.A., Silkin, S.A. & Belkin, P.N. Effect of Plasma-Electrolytic Polishing on the Corrosion Resistance of Structural Steels after Their Anodic Saturation with Nitrogen, Boron, and Carbon. Russ J Electrochem 56, 356–364 (2020). https://doi.org/10.1134/S1023193520040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040084

Keywords:

Navigation