Skip to main content
Log in

On the Calculation of the Electrical Conductivity of Hot Dense Nonideal Plasmas

  • NONIDEAL PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

Factors affecting the calculation of the electrical conductivity of hot dense nonideal plasma systems are revisited and scrutinized. Essential features relevant to truncation of the internal partition function, Coulomb strong coupling, electronic excited states, in addition to high ionization boundary and Coulomb logarithm, are thoroughly investigated and assessed. Particular interest has been given to the study of the frequently occurring problem of producing intersecting conductivity isotherms at high densities. An improved model for the prediction of the electrical conductivity of hot dense matter is developed and used to calculate the electrical conductivity of partially ionized and partially degenerate matter at high energy density. Compared to results from competitive models in the literature, predictions from the present model have shown better physical behavior in avoiding the problem of producing intersecting isotherms at high densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. C. E. Hollandsworth, J. D. Powell, M. J. Keele, and C. R. Hummer, J. Appl. Phys. 84, 4992 (1998).

    Article  ADS  Google Scholar 

  2. J. D. Powell and L. D. Thornhill, IEEE Trans. Magn. 37, 183 (2001).

    Article  ADS  Google Scholar 

  3. T. W. L. Sanford, R. C. Mock, R. B. Spielman, D. L. Peterson, D. Mosher and N. F. Roderick, Phys. Plasmas 5, 3755 (1998).

    Article  ADS  Google Scholar 

  4. S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 056303 (2010).

  5. M. R. Gomez, S. A. Slutz, A. B. Sefkow, D. B. Sinars, K. D. Hahn, S. B. Hansen, E. C. Harding, P. F. Knapp, P. F. Schmit, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, G. A. Chandler, G. W. Cooper, et al., Phys. Rev. Lett. 113, 155003 (2014).

  6. W. A. Stygar, T.  J. Awe, J.  E. Bailey, N.  L. Bennett, E.  W. Breden, E.  M. Campbell, R.  E. Clark, R.  A. Cooper, M.  E. Cuneo, J.  B. Ennis, D.  L. Fehl, T. C. Genoni, M.  R. Gomez, G.  W. Greiser, F. R. Gru-ner, et al., Phys. Rev. Spec. Top.–Accel. Beams 18, 110401 (2015).

  7. V. E. Fortov, Extreme States of Matter. High Energy Density Physics (Springer International Publishing Switzerland, Heidelberg, 2016).

  8. M. Mitchner and C. H. Kruger, Jr., Partially Ionized Gases (Wiley, New York, 1973).

    Google Scholar 

  9. R. Redmer, Phys. Rev. E 59, 1073 (1999).

    Article  ADS  Google Scholar 

  10. S. Kuhlbrodt and R. Redmer, J. Phys. A: Math., Nucl. Gen. 36, 6027 (2003).

    Google Scholar 

  11. D.-K. Kim and I. Kim, Phys. Rev. E 68, 056410 (2003)

  12. M. R. Zaghloul, Phys. Plasmas 17, 062701 (2010).

  13. M. R. Zaghloul, Phys. Plasmas 17, 124706 (2010).

  14. M. R. Zaghloul, Phys. Plasmas 17, 122903 (2010). https://doi.org/10.1063/1.3528269

    Article  ADS  Google Scholar 

  15. M. R. Zaghloul, Eur. Phys. J. H 36, 401 (2011). (See also: M. R. Zaghloul, Eur. Phys. J. H 38, 279 (2013)).

    Article  Google Scholar 

  16. M. R. Zaghloul, Phys. Lett. A 377, 1119 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. R. Zaghloul, High Energy Density Phys. 26, 8 (2018).

    Article  ADS  Google Scholar 

  18. M. R. Zaghloul, IEEE Trans. Plasma Sci. 46, 390 (2018).

    Article  ADS  Google Scholar 

  19. A. V. Filippov, A. N. Starostin, and V. K. Gryaznov, J. Exp. Theor. Phys. 126, 430 (2018).

    Article  ADS  Google Scholar 

  20. W. Ebeling, A. Forster, V. E. Fortov, V. K. Gryaznov, and A. Ya. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991).

    Google Scholar 

  21. W. C. Martin, J. R. Fuhr, D. E. Kelleher, A. Musgrove, L. Podobedova, J. Reader, E. B. Saloman, C. J. Sansonetti, W. L. Wiese, P. J. Mohr, and K. Olsen, NIST Atomic Spectra Database, Version 2.0. http://physics.nist.gov/asd. Cited May 4, 2020.

  22. M. R. Zaghloul, Phys. Plasmas 22, 062701 (2015).

  23. K. Günther and R. Radtke, Electric Properties of Weakly Nonideal Plasmas (Birkhäuser, Basel, Boston, Stuttgart, 1984).

    Google Scholar 

  24. R. J. Zollweg and R. W. Liebermann, J. Appl. Phys. 62, 3621 (1987).

    Article  ADS  Google Scholar 

  25. J. R. Adams, N. S. Shilkin, V. E. Fortov, V. K. Gryaznov, V. B. Mintsev, R. Redmer, H. Reinholz, and G. Röpke, Phys. Plasmas 14, 062303 (2007).

  26. M. R. Zaghloul, Phys. Plasmas 15, 042705 (2008).

    Article  ADS  Google Scholar 

  27. Z.-J. Fu, W. Quan, W. Zhang, Z. Li, J. Zheng, Y. Gu, and Q. Chen, Phys. Plasmas 24, 013303 (2017).

  28. M. P. Desjarlais, Contrib. Plasma Phys. 41, 267 (2001).

    Article  ADS  Google Scholar 

  29. L. Spitzer and R. Härm, Phys. Rev. 89, 977 (1953).

    Article  ADS  Google Scholar 

  30. I. M. Bespalov and A. Ya. Polishchuk, Sov. Tech. Phys. Lett. 15, 39 (1989).

    Google Scholar 

  31. M. R. Zaghloul, M. A. Bourham, J. M. Doster, and J. D. Powell, Phys. Lett. A 262, 86 (1999).

    Article  ADS  Google Scholar 

  32. D. G. Hummer and D. Mihalas, Astrophys. J. 331, 794 (1988).

    Article  ADS  Google Scholar 

  33. A. Y. Potekhin, G. Chabrier, and Y. A. Shibanov, Phys. Plasmas 3, 4156 (1996).

    Article  ADS  Google Scholar 

  34. H. R. Griem, Phys. Rev. 128, 997 (1962).

    Article  ADS  Google Scholar 

  35. Z. J. Fu, Q. F. Chen, and X. R. Chen, Contrib. Plasma Phys. 52, 251 (2012).

    Article  ADS  Google Scholar 

  36. E. Fermi, Z. Phys. 26, 54 (1924).

    Article  ADS  Google Scholar 

  37. G. B. Zimmerman and R. M. More, J. Quant. Spectrosc. Radiat. Transfer 23, 517 (1980).

    Article  ADS  Google Scholar 

  38. D. Salzmann, Atomic Processes in Hot Plasmas (Oxford University Press, Oxford, UK, 1998).

    Google Scholar 

  39. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1963; Academic, New York, 1966, 1967), Vols. 1, 2.

  40. W. Ebeling, W. D. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie, Berlin, 1976).

    Google Scholar 

  41. V. E. Fortov and I. T. Yakubov, Physics of Nonideal Plasma (Inst. Probl. Chem. Phys., Russ. Acad. Sci., Chernogolovka, 1984; Hemisphere, New York, 1990).

  42. Transport and Optical Properties of Nonideal Plasma, Ed. by I. T. Yakubov, G. A. Kobzev, and M. M. Popovich (Springer, New York, 1995).

    Google Scholar 

  43. W. Ebeling, V. E. Fortov, and V. Filinov, Quantum Statistics of Dense Gases and Nonideal Plasmas (Springer International Publishing AG, Heidelberg, 2017).

    Book  Google Scholar 

  44. D. Beule, W. Ebeling, and A. Forster, Physica A 241, 719 (1997).

    Article  ADS  Google Scholar 

  45. A. W. DeSilva and J. D. Katsourous, Phys. Rev. E 57, 5945 (1998).

    Article  ADS  Google Scholar 

  46. I. Krisch and H.-J. Kunze, Phys. Rev. E. 58, 6557 (1998).

    Article  ADS  Google Scholar 

  47. J. F. Benage, W. R. Shanahan, and M. S. Murillo, Phys. Rev. Lett. 83, 2953 (1999).

    Article  ADS  Google Scholar 

  48. J. F. Benage, Jr., Phys. Plasmas 7, 2040 (2000).

    Article  ADS  Google Scholar 

  49. A. N. Mostovych and Y. Chan, Phys. Rev. Lett. 79, 5094 (1997).

    Article  ADS  Google Scholar 

  50. V. E. Fortov, V. Ya. Ternovo, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, JETP Lett. 69, 926 (1999).

    Article  ADS  Google Scholar 

  51. V. B. Mintsev and V. E. Fortov, J. Phys. A: Math. Gen. 39, 4319 (2006).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to acknowledge valuable suggestions received from the anonymous reviewers. The author would also like to thank Prof. A.W. DeSilva, University of Maryland, College Park, for providing the experimental data.

Funding

This work is supported by the UAEU-UPAR Project, contract G00002907.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mofreh R. Zaghloul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaghloul, M.R. On the Calculation of the Electrical Conductivity of Hot Dense Nonideal Plasmas. Plasma Phys. Rep. 46, 574–586 (2020). https://doi.org/10.1134/S1063780X20050098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20050098

Keywords:

Navigation