Skip to main content
Log in

Efficient Degradation of Styrene in a Nonthermal Plasma–Catalytic System Over Pd/ZSM-5 Catalyst

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This work has dealt with the efficient degradation of styrene in a reactor system comprised of non-thermal plasma and Pd/ZSM-5 catalyst at room temperature. The problems regarding the individual plasma and catalytic processes such as poor low-temperature activity of the catalytic process and incomplete oxidation of the plasma process were complemented by the combination of both. The results demonstrated that the plasma-coupled Pd/ZSM-5 catalyst significantly enhanced both the styrene oxidation and the CO2 selectivity as compared with the plasma-alone case, greatly reducing the byproducts. The styrene degradation efficiency proportionally increased with increasing the specific input energy. Ozone formed by the plasma played an important role in the oxidation of styrene. The Pd/ZSM5 catalyst could be activated by the plasma, which greatly enhanced the performance for the styrene removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang Z, Yang H, Liu R et al (2020) Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J Hazard Mater 392:122258

    Article  CAS  Google Scholar 

  2. Veerapandian S, Leys C, De Geyter N, Morent R (2017) Abatement of VOCs using packed bed non-thermal plasma reactors: a review. Catalysts 7:113

    Article  Google Scholar 

  3. Lu W, Abbas Y, Mustafa MF et al (2019) A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds. Front Environ Sci Eng 13:30

    Article  CAS  Google Scholar 

  4. Gibbs BF, Mulligan CN (1997) Styrene toxicity: an ecotoxicological assessment. Ecotoxicol Environ Safe 38:181–194

    Article  CAS  Google Scholar 

  5. Zhang H, Li K, Sun T et al (2014) Removal of styrene using dielectric barrier discharge plasmas combined with sol–gel prepared TiO2 coated γ-Al2O3. Chem Eng J 241:92–102

    Article  CAS  Google Scholar 

  6. Zhang H, Li K, Li L et al (2018) High efficient styrene mineralization through novel NiO–TiO2–Al2O3 packed pre-treatment/treatment/post-treatment dielectric barrier discharge plasma. Chem Eng J 343:759–769

    Article  CAS  Google Scholar 

  7. Zhong J, Zeng Y, Chen D et al (2020) Toluene oxidation over Co3+-rich spinel Co3O4: evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR–TOF–MS. J Hazard Mater 386:121957

    Article  CAS  Google Scholar 

  8. Ostrovsky YV, Zabortsev GM, Shpak AA et al (2017) Catalytic oxidation of volatile organic compounds in industrial off-gases. Eurasian Chem J 4:31

    Article  Google Scholar 

  9. Boulinguiez B, Le Cloirec P (2010) Adsorption on activated carbons of five selected volatile organic compounds present in biogas: comparison of granular and fiber cloth materials. Energy Fuels 24:4756–4765

    Article  CAS  Google Scholar 

  10. Wang X, Jia X, Wen J (2010) Transient modeling of toluene waste gas biotreatment in a gas–liquid airlift loop reactor. Chem Eng J 159:1–10

    Article  Google Scholar 

  11. Xiao G, Xu W, Wu R et al (2014) Non-thermal plasmas for VOCs abatement. Plasma Chem Plasma Proc 34:1033–1065

    Article  CAS  Google Scholar 

  12. Schiavon M, Torretta V, Casazza A, Ragazzi M (2017) Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: a review. Water Air Soil Pollut 228:388

    Article  Google Scholar 

  13. Tang Q, Jiang W, Cheng Y et al (2011) Generation of reactive species by gas-phase dielectric barrier discharges. Ind Eng Chem Res 50:9839–9846

    Article  CAS  Google Scholar 

  14. Pekárek S, Khun J (2006) Non-thermal plasma at atmospheric pressure for ozone generation and volatile organic compounds decomposition. Acta Phys Slovaca 56:109–113

    Google Scholar 

  15. Magureanu M, Mandache NB, Parvulescu VI et al (2007) Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: optimization of the reactor geometry and introduction of catalytic electrode. Appl Catal B Environ 74:270–277

    Article  CAS  Google Scholar 

  16. Mista W, Kacprzyk R (2008) Decomposition of toluene using non-thermal plasma reactor at room temperature. Catal Today 137:345–349

    Article  CAS  Google Scholar 

  17. Zhang X, Feng F, Li S et al (2013) Aerosol formation from styrene removal with an AC/DC streamer corona plasma system in air. Chem Eng J 232:527–533

    Article  CAS  Google Scholar 

  18. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  19. Zhu R, Mao Y, Jiang L, Chen J (2015) Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts. Chem Eng J 279:463–471

    Article  CAS  Google Scholar 

  20. Zhang J, Li Y, Zhang Y et al (2015) Effect of support on the activity of Ag-based catalysts for formaldehyde oxidation. Sci Rep 5:1–10

    Google Scholar 

  21. Veerapandian KPS, De Geyter N, Giraudon J-M et al (2019) The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: a review. Catalysts 9:98

    Article  Google Scholar 

  22. Freitas CMAS, Soares OSGP, Órfão JJM et al (2015) Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chem 17:4247–4254

    Article  CAS  Google Scholar 

  23. Vercammen KLL, Berezin AA, Lox F, Chang J-S (2017) Non-thermal plasma techniques for the reduction of volatile organic compounds in air streams: a critical review. J Adv Oxid Technol 2:312–329

    Google Scholar 

  24. Liu CJ, Zou J, Yu K et al (2006) Plasma application for more environmentally friendly catalyst preparation. Pure Appl Chem 78:1227–1238

    Article  CAS  Google Scholar 

  25. Gandhi MS, Ananth A, Mok YS et al (2014) Effect of porosity of α-alumina on non-thermal plasma decomposition of ethylene in a dielectric-packed bed reactor. Res Chem Intermed 40:1483–1493

    Article  CAS  Google Scholar 

  26. Bo Z, Yan JH, Li XD et al (2007) Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge. Plasma Chem Plasma Process 27:546–558

    Article  CAS  Google Scholar 

  27. Chen HL, Lee HM, Chen SH, Chang MB (2008) Review of packed-bed plasma reactor for ozone generation and air pollution control. Ind Eng Chem Res 47:2122–2130

    Article  CAS  Google Scholar 

  28. Sekiguchi K, Sanada A, Sakamoto K (2003) Degradation of toluene with an ozone-decomposition catalyst in the presence of ozone, and the combined effect of TiO2 addition. Catal Commun 4:247–252

    Article  CAS  Google Scholar 

  29. Konova P, Stoyanova M, Naydenov A et al (2006) Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. Appl Catal A Gen 298:109–114

    Article  CAS  Google Scholar 

  30. Zhu T, Li J, Jin Y et al (2008) Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect. Int J Environ Sci Technol 5:375–384

    Article  CAS  Google Scholar 

  31. Demidiouk V, Chae JO (2005) Decomposition of volatile organic compounds in plasma–catalytic system. IEEE Trans Plasma Sci 33:157–161

    Article  CAS  Google Scholar 

  32. Jiang N, Lu N, Shang K et al (2013) Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environ Sci Technol 47:9898–9903

    Article  CAS  Google Scholar 

  33. Kohno H, Berezin AA, Chang JS (1998) Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE Trans Ind Appl 34:953–966

    Article  CAS  Google Scholar 

  34. Mas Haris MR, Kathiresan S, Mohan S (2010) FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chem 2:316–323

    Google Scholar 

  35. Islam MT, Rodríguez-Hornedo N, Ciotti S, Ackermann C (2004) Fourier transform infrared spectroscopy for the analysis of neutralizer–carbomer and surfactant–carbomer interactions in aqueous, hydroalcoholic and anhydrous gel formulations. AAPS J 6:4–10

    Article  Google Scholar 

  36. Mo J, Zhang Y, Xu Q et al (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  CAS  Google Scholar 

  37. Ogata A, Ito D, Mizuno K et al (2002) Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Appl Catal A Gen 236:9–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Technology Development Program to Solve Climate Changes (NRF-2019M1A2A2103912) through NRF (National Research Foundation of Korea) and by the National Research Council of Science & Technology (NST) granted by the Korea government (MSIT) (Project No. CAP-18-08-KIMM). A part of this research was supported by the 2020 scientific promotion program funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sun Mok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T., Nguyen, D.B., Heo, I. et al. Efficient Degradation of Styrene in a Nonthermal Plasma–Catalytic System Over Pd/ZSM-5 Catalyst. Plasma Chem Plasma Process 40, 1207–1220 (2020). https://doi.org/10.1007/s11090-020-10088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10088-w

Keywords

Navigation