Skip to main content
Log in

A universal sample-based background subtraction method for traffic surveillance videos

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Background subtraction in traffic surveillance videos plays a crucial role in many high-level analytics and applications. Although great progress has been made in background subtraction, there are still many challenges in real traffic surveillance circumstances, such as camouflaged vehicles and dynamic background. This paper proposes a universal and accurate sampled-based vehicle detection method. The proposed method uses the color and Haar features to construct the background model, which can increase the accuracy of vehicle detection for camouflaged vehicles and is robust to low visibility. Besides, to reduce the incorrect samples of the initialized background model from a single image, the samples of the initial background model are randomly chosen from a similar candidate set. Furthermore, a novel random strategy is proposed to update the background pixel itself, while a combination update strategy with certainty and randomness is adopted for its neighborhood. This updating mechanism speeds up the suppression of ghosts in the background model. Experimental results verify the excellent behavior of our proposed method when compared to other mainstream methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Anagnostopoulos C-NE, Anagnostopoulos IE, Psoroulas ID, Loumos V, Kayafas E (2008) License plate recognition from still images and video sequences: a survey. IEEE Trans Intell Transp Syst 9(3):377–391

    Google Scholar 

  2. Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    MathSciNet  MATH  Google Scholar 

  3. Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Computer science review 11:31–66

    MATH  Google Scholar 

  4. Cao L, Jiang Q, Cheng M, Wang C (2016) Robust vehicle detection by combining deep features with exemplar classification. Neurocomputing 215:225–231

    Google Scholar 

  5. Caseiro R, Martins P, Henriques JF, Batista J (2012) A nonparametric Riemannian framework on tensor field with application to foreground segmentation. Pattern Recogn 45(11):3997–4017

    MATH  Google Scholar 

  6. Chen X, Xiang S, Liu C-L, Pan C-H (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci Remote Sens Lett 11(10):1797–1801

    Google Scholar 

  7. Chen L-C, Hsieh J-W, Yan Y, Chen D-Y (2015) Vehicle make and model recognition using sparse representation and symmetrical SURFs. Pattern Recogn 48(6):1979–1998

    Google Scholar 

  8. Chen Z, Wang C, Luo H, Wang H, Chen Y, Wen C, Yu Y, Cao L, Li J (2016) Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature. IEEE Trans Intell Transp Syst 17(8):2296–2309

    Google Scholar 

  9. Chen M, Wei X, Yang Q, Li Q, Wang G, Yang M-H (2017) Spatiotemporal GMM for background subtraction with superpixel hierarchy. IEEE Trans Pattern Anal Mach Intell 40(6):1518–1525

    Google Scholar 

  10. Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90(7):1151–1163

    Google Scholar 

  11. N. Friedman, and S. Russell, "Image segmentation in video sequences: A probabilistic approach." pp. 175–181.

  12. Guo J-M, Hsia C-H, Liu Y-F, Shih M-H, Chang C-H, Wu J-Y (2013) Fast background subtraction based on a multilayer codebook model for moving object detection. IEEE Transactions on Circuits and Systems for Video Technology 23(10):1809–1821

    Google Scholar 

  13. Haines TS, Xiang T (2013) Background subtraction with dirichletprocess mixture models. IEEE Trans Pattern Anal Mach Intell 36(4):670–683

    Google Scholar 

  14. J. S. Hu, and T. M. Su, “Robust background subtraction with shadow and highlight removal for indoor surveillance,” EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1, pp. 082931, 2007.

  15. Jazayeri A, Cai H, Zheng JY, Tuceryan M (2011) Vehicle detection and tracking in car video based on motion model. IEEE Trans Intell Transp Syst 12(2):583–595

    Google Scholar 

  16. Jiang S, Lu X (2018) WeSamBE: a weight-sample-based method for background subtraction. IEEE Transactions on Circuits and Systems for Video Technology 28(9):2105–2115

    Google Scholar 

  17. Jo K, Lee M, Kim J, Sunwoo M (2016) Tracking and behavior reasoning of moving vehicles based on roadway geometry constraints. IEEE Trans Intell Transp Syst 18(2):460–476

    Google Scholar 

  18. Jodoin P-M, Mignotte M, Konrad J (2007) Statistical background subtraction using spatial cues. IEEE Transactions on Circuits and Systems for Video Technology 17(12):1758–1763

    Google Scholar 

  19. Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground–background segmentation using codebook model. Real-time imaging 11(3):172–185

    Google Scholar 

  20. D. S. Lee, “Effective Gaussian mixture learning for video background subtraction,” IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 5, pp. 827–832, 2005.

  21. Ngo C-W, Pong T-C, Zhang H-J (2002) Motion-based video representation for scene change detection. Int J Comput Vis 50(2):127–142

    MATH  Google Scholar 

  22. Qu T, Zhang Q, Sun S (2017) Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks. Multimed Tools Appl 76(20):21651–21663

    Google Scholar 

  23. Rajan J, Kannan K, Kaimal M (2008) An improved hybrid model for molecular image denoising. Journal of Mathematical Imaging and Vision 31(1):73–79

    MathSciNet  Google Scholar 

  24. Rodriguez-Gomez R, Fernandez-Sanchez EJ, Diaz J, Ros E (2015) Codebook hardware implementation on FPGA for background subtraction. J Real-Time Image Proc 10(1):43–57

    Google Scholar 

  25. Sheikh Y, Shah M (2005) Bayesian modeling of dynamic scenes for object detection. IEEE Trans Pattern Anal Mach Intell 27(11):1778–1792

    Google Scholar 

  26. Sivaraman S, Trivedi MM (2013) Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Trans Intell Transp Syst 14(4):1773–1795

    Google Scholar 

  27. Srivastava A, Lee AB, Simoncelli EP, Zhu S-C (2003) On advances in statistical modeling of natural images. Journal of mathematical imaging and vision 18(1):17–33

    MathSciNet  MATH  Google Scholar 

  28. C. Stauffer, and W. E. L. Grimson, "Adaptive background mixture models for real-time tracking." pp. 246–252.

  29. St-Charles P-L, Bilodeau G-A, Bergevin R (2014) Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24(1):359–373

    MathSciNet  MATH  Google Scholar 

  30. Tavakkoli A, Nicolescu M, Bebis G, Nicolescu M (2009) Non-parametric statistical background modeling for efficient foreground region detection. Mach Vis Appl 20(6):395–409

    Google Scholar 

  31. Tian B, Morris BT, Tang M, Liu Y, Yao Y, Gou C, Shen D, Tang S (2014) Hierarchical and networked vehicle surveillance in ITS: a survey. IEEE Trans Intell Transp Syst 16(2):557–580

    Google Scholar 

  32. Vatavu A, Danescu R, Nedevschi S (2014) Stereovision-based multiple object tracking in traffic scenarios using free-form obstacle delimiters and particle filters. IEEE Trans Intell Transp Syst 16(1):498–511

    Google Scholar 

  33. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Google Scholar 

  34. Wang H, Suter D (2007) A consensus-based method for tracking: Modelling background scenario and foreground appearance. Pattern Recogn 40(3):1091–1105

    MATH  Google Scholar 

  35. Wang Y, Loe K-F, Wu J-K (2005) A dynamic conditional random field model for foreground and shadow segmentation. IEEE Trans Pattern Anal Mach Intell 28(2):279–289

    Google Scholar 

  36. Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research 10:207–244

    MATH  Google Scholar 

  37. B. White, and M. Shah, "Automatically tuning background subtraction parameters using particle swarm optimization." pp. 1826-1829.

  38. J. Wiest, M. Höffken, U. Kreßel, and K. Dietmayer, "Probabilistic trajectory prediction with Gaussian mixture models." pp. 141–146.

  39. You X, Li Q, Tao D, Ou W, Gong M (2014) Local metric learning for exemplar-based object detection. IEEE Transactions on Circuits and Systems for Video Technology 24(8):1265–1276

    Google Scholar 

  40. Zeng D, Zhu M, Kuijper A (2019) Combining background subtraction algorithms with convolutional neural network. Journal of Electronic Imaging 28(1):013011

    Google Scholar 

  41. Zhao Z, Feng P, Wang T, Liu F, Yuan C, Guo J, Zhao Z, Cui Z (2017) Dual-scale structural local sparse appearance model for robust object tracking. Neurocomputing 237:101–113

    Google Scholar 

  42. Zivkovic Z, Van Der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities under grant NS2018044. The authors would like to thank the associate editor and anonymous reviewers for their constructive and valuable comments and thank P. St-Charles and O. Barnish for publishing their codes on the internet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Zeng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Xie, C., Yang, Z. et al. A universal sample-based background subtraction method for traffic surveillance videos. Multimed Tools Appl 79, 22211–22234 (2020). https://doi.org/10.1007/s11042-020-08948-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08948-w

Keywords

Navigation