Skip to main content
Log in

Polymeric Conformation of Organic Interlayers as a Determining Parameter for the Charge Transport of Organic Field-Effect Transistors

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Here, we systematically investigated the effects of different carbon numbers or alkyl chain lengths of organic SAM interlayers on electrical properties of poly (dioctyl-quaterthiophenedioctyl-bithiazole) (PDQDB) organic field-effect transistors (OFETs). Although the end-group functionalities of organic interlayers were chemically identical, the phase state and structural ordering of polymeric chains in the organic SAM interlayers significantly affected the field-effect mobility (µFET) or threshold voltage (Vth). For cases where the PDQDB layer is interfaced with the highly ordered polymeric chains, the average µFETs demonstrated an increase from 0.11 to 0.17 cm2V−1s−1 when the chain length was changed from C8 to C18, respectively, with the Vth variations being negatively shifted. We confirmed that the conformation of polymeric chains in the organic SAM interlayers were not induced by the structural changes in the PDQDB film, which was verified by the crystalline and morphological analyses. Instead, the results could be explained in terms of the variations in the dipole arrangement with changes in the phase state or increased structural ordering of the polymeric alkyl chains in the SAM interlayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Xie, Y. Wang, Z. Zhang, D. Wang, and L. Luo, Nano Today, 19, 41 (2018).

    Article  CAS  Google Scholar 

  2. W. Tan, C. Chiang, M. Hofmann, and Y. Chen, Sci. Rep., 6, 31475 (2016).

    Article  CAS  Google Scholar 

  3. Y. Ren, X. Yang, L. Zhou, J. Mao, S. Han, and Y. Zhou, Adv. Funct. Mater., 29, 1902105 (2019).

    Article  Google Scholar 

  4. H. Jeong, S. Han, S. Baek, S. Kim, and H. Lee, ACS Appl. Mater. Interfaces, 8, 24753 (2016).

    Article  CAS  Google Scholar 

  5. H. Sirringhaus, Adv. Mater., 26, 1319 (2014).

    Article  CAS  Google Scholar 

  6. H. Li, N. Tessler, and J. Brédas, Adv. Funct. Mater., 28, 1803096 (2018).

    Article  Google Scholar 

  7. W. Shi, Y. Guo, and Y. Liu, Adv. Mater., 32, 1901493 (2019).

    Article  Google Scholar 

  8. J. Li, W. Tang, Q. Wang, W. Sun, Q. Zhang, X. Guo, X. Wang, and F. Yan, Mater. Sci. Eng. R, 127, 1 (2018).

    Article  CAS  Google Scholar 

  9. A. T. Lill, A. F. Eftaiha, J. Huang, H. Yang, M. Seifrid, M. Wang, G. C. Bazan, and T. Q. Nguyen, ACS Appl. Mater., 11, 15821 (2019)

    Article  CAS  Google Scholar 

  10. J. M. Adhikari, M. R. Gadinski, Q. Li, K. G. Sun, M. A. Reyes, E. Iagodkine, A. L. Briseno, T. N. Jackson, Q. Wang, and E. D. Gomez, Adv. Mater., 28, 10095 (2016).

    Article  CAS  Google Scholar 

  11. F. Yang, L. Sun, J. Han, B. Li, X. Yu, X. Zhang, X. Ren, and W. Hu, ACS Appl. Mater. Interfaces, 10, 25871 (2018).

    Article  CAS  Google Scholar 

  12. J. Qian, S. Jiang, S. Li, X. Wang, Y. Shi, and Y. Li, Adv. Mater. Technol., 4, 1800182 (2018).

    Article  Google Scholar 

  13. E. Shin, W. Park, Y. Kwon, Y. Xu, and Y. Noh, ACS Appl. Mater. Interfaces, 11, 12709 (2019).

    Article  CAS  Google Scholar 

  14. S. Zhou, Q. Tang, H. Tian, X. Zhao, Y. Tong, S. Barlow, S. R. Marder, and Y. Liu, ACS Appl. Mater. Interfaces, 10, 15943 (2018).

    Article  CAS  Google Scholar 

  15. H. Kwon, C. Gao, X. Tang, J. Hong, C. Park, H. Kong, S. Kim, and H. Yang, Org. Electron., 77, 105485 (2020).

    Article  CAS  Google Scholar 

  16. S. Kumar, D. Panigrahi, and A. Dhar, Appl. Surf. Sci., 435, 855 (2018).

    Article  CAS  Google Scholar 

  17. T. K. Rockson, S. Back, H. Jang, S. Oh, G. Choi, H. Choi, and H. Lee, J. Phys. Chem. C, 122, 17695 (2018).

    Article  CAS  Google Scholar 

  18. J. Kim, B. Kang, and K. Cho, Adv. Funct. Mater., 29, 1806030 (2019).

    Article  Google Scholar 

  19. Y. Kim, J. Bae, H. Song, T. An, Y. Kim, and C. Park, ACS Appl. Mater. Interfaces, 9, 39493 (2017).

    Article  CAS  Google Scholar 

  20. T. K. Rockson, S. Back, H. Jang, G. Choi, S. Oh, J. Kim, H. Cho, H. Choi, and H. Lee, ACS Appl. Mater. Interfaces, 11, 10117 (2019).

    Article  Google Scholar 

  21. T. Breuer, A. Karthäuser, H. Klemm, F. Genuzio, G. Peschel, A. Fuhrich, T. Schmidt, and G. Witte, ACS Appl Mater. Interfaces, 9, 8384 (2017).

    Article  CAS  Google Scholar 

  22. P. Prisawong, P. Zalar, A. Reuveny, N. Matsuhisa, W. Lee, T. Yokota, and T. Someya, Adv. Mater, 28, 2049 (2016).

    Article  CAS  Google Scholar 

  23. M. Nakano, I. Osaka, and K. Takimiya, Adv. Mater., 29, 1602893 (2016).

    Article  Google Scholar 

  24. X. Ren, K. Pei, B. Peng, Z. Zhang, Z. Wang, X. Wang, and P. K. L. Chan, Adv. Mater, 28, 4832 (2016).

    Article  CAS  Google Scholar 

  25. F. Zhang, E. Mohammadi, X. Luo, J. Strzalka, J. Mei, and Y. Diao, Langmuir, 34, 1109 (2018).

    Article  CAS  Google Scholar 

  26. B. Lee, E. Jeong, J. Shin, B. Koo, and I. Kang, US Patent, 7079327 (2006).

  27. S. Oh, H. Cho, G. Choi, J. Ha, M. R. R. Khan, and H. Lee, ACS Appl. Mater. Interfaces, 11, 40358 (2019).

    Article  CAS  Google Scholar 

  28. D. Kim, Y. Jang, Y. Park, and K. Cho, Langmuir, 21, 3203 (2005).

    Article  CAS  Google Scholar 

  29. X. Gu, L. Shaw, K. Gu, M. F. Toney, and Z. Bao, Nat. Commun., 9, 534 (2018).

    Article  Google Scholar 

  30. S. Wang, S. Zhou, Y. Tong, Z. Song, H. Wang, Q. Tang, X. Zhao, and Y. Liu, Adv. Mater. Interfaces, 6, 1801984 (2019).

    Article  Google Scholar 

  31. Q. Wang, C. Chueh, T. Zhao, J. Cheng, M. Eslamian, W. C. H. Choy, and A. K. Jen, ChemSusChem, 10, 3794 (2017).

    Article  CAS  Google Scholar 

  32. B. Hu, M. Zeng, J. Chen, Z. Zhang, X. Zhang, and Z. Fan, Small, 12, 4707 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ho Choi or Hwa Sung Lee.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C101269011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Oh, S., Choi, G. et al. Polymeric Conformation of Organic Interlayers as a Determining Parameter for the Charge Transport of Organic Field-Effect Transistors. Macromol. Res. 28, 670–676 (2020). https://doi.org/10.1007/s13233-020-8112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8112-2

Keywords

Navigation