Skip to main content
Log in

Sodium Nitroprusside and Gibberellin Effects on Seed Germination and Seedling Development of Grapevine (Vitis vinifera L.) Cvs. Ekşi Kara and Gök Üzüm

Einfluss von Natrium-Nitroprussid und Gibberelline auf die Saatgutkeimung und Keimlingsentwicklung bei Weinreben (Vitis vinifera L.) der Sorten ‘Ekşi Kara‘ und ‘Gök Üzüm‘

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Seed germination is a key ecological and agronomic trait, which plays a critical role affecting the subsequent growth and production of higher plants. The bioactive molecule nitric oxide (NO) is a prooxidant as well as antioxidant in plants. Gibberellic acid (GA) enhances the seed germination. In the present study, we tested the effects of Sodium nitroprusside (SNP, as NO donor) and GA3 applications on seed viability, seed germination and seedling development of the Control, and Boron (B) and Zinc (Zn) applied grapevine seeds (Vitis vinifera L. cvs. Ekşi Kara and Gök Üzüm). B and Zn treatments were carried out in a commercial vineyard in Konya province Turkey, and aqueous solution of SNP (100 μM-24 h, 100 μM-48 h) and GA3 (1 gL−1-24 h, 1 gL−1-48 h) treatments applied at 90 days stratified seeds in Selcuk University. Foliar spray of boric acid (0.15%) and Zn sulfate (0.25%) were done approximately two weeks after full bloom. Results showed that the SNP and the GA3 treatments enhanced the viability and germination rates of the seeds. The B and the Zn foliar applications also promoted the seed viability and seed germination rates in both grape cultivars. Effects of treatments on seedling development depended on the cultivar and application time in the Control, B and Zn applied seeds. The results showed that the SNP and the GA3 applications can be useful for promoting seed viability and seed germination rates in grapevines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlfors R, Brosché M, Kangasjär J (2009) Ozone and nitric oxide interaction in Arabidopsis thaliana, a role for ethylene? A role for ethylene? Plant Signal Behav 4(9):878–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alloway B (2004) Zinc in soils and crop nutrition. International Zinc Association Communications. IZA Publications, Brussels

    Google Scholar 

  • Alloway B (2008) Zinc in soils and crop nutrition. IZA, IFA, Brussels, Paris, p 139

    Google Scholar 

  • Batak I, Dević M, Gibal Z, Grubišić D, Poff KL, Konjević R (2002) The effects of potassium nitrate and NO-donors on phytochrome A‑and phytochrome B‑specific induced germination of Arabidopsis thaliana seeds. Seed Sci Res 12(4):253–259

    CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4(8):299–300

    CAS  PubMed  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129(4):1642–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram C, Hass R (2008) Cellular responses to reactive oxygen species-induced DNA damage and aging. Biol Chem 389(3):211–220

    CAS  PubMed  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219(5):847–855

    CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Reinöhl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223(4):805–812

    CAS  PubMed  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H (2012) Seeds: physiology of development, germina ondormancy. Springer Science & Business Media, p 247

  • Bogatek R, Gniazdowska A (2018) Ethylene in seed development, dormancy and germination. Annual Plant Reviews online, pp 189–218

    Google Scholar 

  • Boullerne A, Nedelkoska L, Benjamins J (1999) Synergism of nitric oxide and iron in killing the transformed murine oligodendrocyte cell line N20. 1. J Neurochem 72(3):1050–1060

    CAS  PubMed  Google Scholar 

  • Bouquet A (1977) Utilisation de l’acide benzothiazol-2-oxyacétique pour améliorer la faculté germinative des graines de cépages de vigne à maturation précoce. Vitis 16:100–105. https://doi.org/10.5073/vitis.1977.16.100-105

    Article  CAS  Google Scholar 

  • Christensen L, Beede R, Peacock W (2006) Fall foliar sprays prevent boron-deficiency symptoms in grapes. Calif Agric 60(2):100–103

    Google Scholar 

  • Coombe BG, Hale C (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol 51(4):629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122(2):403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305(5686):977–977

    CAS  PubMed  Google Scholar 

  • García MJ, Suárez V, Romera FJ, Alcántara E, Pérez-Vicente R (2011) A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol Biochem 49(5):537–544

    PubMed  Google Scholar 

  • Gimeno V, Simón I, Nieves M, Martínez V, Cámara-Zapata JM, García AL, García-Sánchez F (2012) The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees 26(5):1513–1526

    CAS  Google Scholar 

  • Gniazdowska A, Dobrzyńska U, Babańczyk T, Bogatek R (2007) Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta 225(4):1051–1057

    CAS  PubMed  Google Scholar 

  • Gouvea C, Souza J, Magalhaes A, Martins I (1997) NO·-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21(3):183–187

    CAS  Google Scholar 

  • Haber AH, Luippold HJ (1960) Separation of mechanisms initiating cell division and cell expansion in lettuce seed germination. Plant Physiol 35(2):168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179(1):33–54

    CAS  PubMed  Google Scholar 

  • Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40(3):501–506

    CAS  PubMed  Google Scholar 

  • Hung KT, Kao CH (2004) Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol 161(1):43–52

    CAS  PubMed  Google Scholar 

  • Keshavarz K, Vahdati K, Samar M, Azadegan B, Brown PH (2011) Foliar application of zinc and boron improves walnut vegetative and reproductive growth. HortTechnology 21(2):181–186

    CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36

    CAS  PubMed  Google Scholar 

  • Krämer U, Clemens S (2005) Functions and homeostasis of zinc, copper, and nickel in plants. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. Springer, Berlin, Heidelberg, pp 215–271

    Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54(1):109–136

    CAS  PubMed  Google Scholar 

  • Lamotte O, Courtois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta 221(1):1–4

    CAS  PubMed  Google Scholar 

  • Lichtenthaler H (1987) Chlorophyll and carotenoids-pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 148. Academic Press, San Diego

    Google Scholar 

  • Lin Y, Chen D, Paul M, Zu Y, Tang Z (2013) Loss-of-function mutation of EIN2 in Arabidopsis exaggerates oxidative stress induced by salinity. Acta Physiol Plant 35(4):1319–1328

    CAS  Google Scholar 

  • Lin Y, Wang J, Zu Y, Tang Z (2012) Ethylene antagonizes the inhibition of germination in Arabidopsis induced by salinity by modulating the concentration of hydrogen peroxide. Acta Physiol Plant 34(5):1895–1904

    CAS  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183(4):1030–1042

    CAS  PubMed  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61(11):2979–2990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manivel L, Weaver R (1974) Effect of growth regulators and heat on germination of Tokay grape seeds. Vitis 12:286–290

    CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, Cambridge

    Google Scholar 

  • Matilla A, Matilla-Vázquez M (2008) Involvement of ethylene in seed physiology. Plant Sci 175(1/2):87–97

    CAS  Google Scholar 

  • May P (2004) Flowering and fruitset in grapevines. Lythrum, Adelaide

    Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Developmental physiology: the vegetative grapevine In: Biology of the grapevine. Cambridge University Press, UK, pp 80–111

    Google Scholar 

  • Oh S, McCaslin PP (1995) The iron component of sodium nitroprusside blocks NMDA-induced glutamate accumulation and intracellular Ca 2+ elevation. Neurochem Res 20(7):779–784

    CAS  PubMed  Google Scholar 

  • Olmo H (1934) Empty-seededness in varieties of Vitis vinifera. Proc Am Soc Hort Sci 1934:376–380

    Google Scholar 

  • Osborne DJ, Sharon R, Ben-Ishai R (1980) Studies on DNA integrity and DNA repair in germinating embryos of rye (Secale cereale). Isr J Bot 29(1–4):259–272

    Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129(3):954–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal RN, Singh R, Vij VK, Sharma JN (1976) Effect of gibberellins GA3, GA4+7, and GA13, on seed germination and subsequent seedling growth in Early Muscat grape. Vitis 14:265–268

    CAS  Google Scholar 

  • Pandey N, Pathak G, Sharma C (2009) Impairment in reproductive development is a major factor limiting yield of black gram under zinc deficiency. Biol Plant 53(4):723

    CAS  Google Scholar 

  • Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26(2):66–69

    CAS  PubMed  Google Scholar 

  • Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331(10):796–805

    PubMed  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148(1):620–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selim H, Ibrahim F, Fayek M, El-Deen S, Gamal N (1981) Effect of different treatments on germination of Romi red grape seeds. Vitis 20:115–121

    CAS  Google Scholar 

  • Shallan MA, Hassan HM, Namich AA, Ibrahim AA (2012) Effect of sodium nitroprusside, putrescine and glycine betaine on alleviation of drought stress in cotton plant. Am Eurasian J Agric Environ Sci 12(9):1252–1265

    Google Scholar 

  • Shaulis N, Smart R (1974) Grapevine canopies: management, microclimate and yield responses. In: Proceedings XIX International Horticultural Congress Warsaw, Poland, pp 255–265

    Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Gniazdowska A, Wiśniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236(5):1629–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Singh S (2009) Zinc nutrition in ‘Nagpur’ mandarin on haplustert. J Plant Nutr 32(7):1065–1081

    CAS  Google Scholar 

  • Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230(2):293–307

    CAS  PubMed  Google Scholar 

  • Zhao M‑G, Tian Q‑Y, Zhang W‑H (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144(1):206–217

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Selcuk University Research Funds (Project No: 18201063 as the master thesis of Erdem Vergili) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeki Kara.

Ethics declarations

Conflict of interest

Z. Kara, K. Yazar, O. Doğan and E. Vergili declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, Z., Yazar, K., Doğan, O. et al. Sodium Nitroprusside and Gibberellin Effects on Seed Germination and Seedling Development of Grapevine (Vitis vinifera L.) Cvs. Ekşi Kara and Gök Üzüm. Erwerbs-Obstbau 62 (Suppl 1), 61–68 (2020). https://doi.org/10.1007/s10341-020-00497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-020-00497-8

Keywords

Schlüsselwörter

Navigation