Skip to main content

Advertisement

Log in

A multi-phase impedance source inverter with an improved controller structure

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Impedance source inverters (ZSIs) have many advantages like the ability to work as a buck or boost inverter and work with different renewable energy sources and can be applied as a voltage source or current source inverter. The switching circuits of ZSI normally are complicated and hard to be implemented. In this paper, a modified sinusoidal pulse width modulation method for ZSI block is presented based on an optimized mathematical model in order to switch the power components of this inverter. The proposed switching structure can be extended to more than one phase, by using the combination of the step-up converter, ZSI networks with the same switching topology for per phase and a full bridge inverter block in order to present a pure sinusoidal wave in the structure’s output especially for resistive and inductive loads which are the real and industrial types of the loads. The Boost converter has been applied in our proposed structure in order to enhance the level of the generated voltages by RESs. Due to the ability to increase the voltage across the wide range, good resistance to electro-magnetic interference, acceptable total harmonic distortion value of the waves and immunity through shoot, this converter can be used extensively in PV systems, cell fuel, wind power and UPS systems. One of the most important specifications of the proposed switching method is working with low and intermediate values of duty cycles for power MOSFETs that can decrease the dynamic losses of the inverter. A wide range of mathematical analysis and simulations have been done to explain the proposed method, and experimental results confirm the theoretical analysis by a 100 W laboratory prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

ZSIs:

Impedance source inverters

RESs:

Renewable energy sources

VSI:

Voltage source inverter

CSI:

Current source inverter

EMI:

Electro-magnetic interference

THD:

Total harmonic distortion

TS:

Through shoot

DGs:

Distributed generators

FCs:

Fuel cells

PVs:

Photovoltaics

PEIs:

Power electronic interfaces

ESSs:

Energy storage systems

QZSI:

Quasi-impedance source inverter

SZSI:

Serial impedance source inverter

SBI:

Switched based increasing inverter

LZSI:

Self-locked impedance source inverter

PWM:

Pulse width modulation

SPWM:

Sinusoidal pulse width modulation

SHS-PWM:

Selective harmonic snubber PWM

FLC:

Fuzzy logical controller

Z:

Zero

NS:

Negative small

NM:

Negative medium

NB:

Negative big

PS:

Positive small

PM:

Positive medium

PB:

Positive big

MPP:

Maximum power point

CCM:

Continuous conduction

DCM:

Discontinuous conduction modes

E :

Error

E :

Change values for the error

P(t):

The output power of the boost converter

V(t):

The input voltage for the boost converter

P(t − 1):

The power value of the boost converter for the previous moment

V(t − 1):

The voltage value of the boost converter for the previous moment

D :

Duty cycle

V IN1 :

The input voltage of the boost converter

V O1 :

The output voltage of the boost converter

G 1 :

The voltage gain of the boost converter

V IN2 :

The input voltage for the second block

V O2 :

The output voltage for the second block

V m :

Amplitude of output voltage of the ZSI

ω :

Angular velocity of output voltage of the ZSI

G 2 :

The voltage gain of the ZSI block

L1, L2 and L3 :

Inductors of first and second block

C1, C2 and C3 :

Capacitors of first and second block

f s :

Switching frequency

M :

Modulation index

L :

Inductor for the boost converter block

L1 and L2 :

Inductors for the ZSI block

C :

Capacitor for the boost converter block

C1 and C2 :

Capacitors for the ZSI block

V IN1 :

Input voltage for the boost converter block

V O1 :

Output voltage for the boost converter block

V O2 :

Output voltage for the upper ZSI block in two-phase approach

V O3 :

Output voltage for the downer ZSI block in two-phase approach

V O :

Output voltage for the FBI block

I L :

Inductor current for the boost converter block

IL :

Inductor current ripple

VC :

Capacitor voltage ripple

iL1 and iL2 :

Inductors currents for the ZSI block

References

  1. Jia K, Yang Z, Fang Y, Bi T, Sumner M (2019) Influence of inverter-interfaced renewable energy generators on directional relay and an improved scheme. IEEE Trans Power Electron 34(12):11843–11855. https://doi.org/10.1109/TPEL.2019.2904715

    Article  Google Scholar 

  2. Dutta S, Chatterjee K (2018) A buck and boost based grid connected pv inverter maximizing power yield from two PV arrays in mismatched environmental conditions. IEEE Trans Ind Electron 65(7):5561–5571. https://doi.org/10.1109/TIE.2017.2774768

    Article  Google Scholar 

  3. Gui Y, Wang X, Wu H, Blaabjerg F (2019) Voltage-modulated direct power control for a weak grid-connected voltage source inverters. IEEE Trans Power Electron 34(11):11383–11395. https://doi.org/10.1109/TPEL.2019.2898268

    Article  Google Scholar 

  4. Mohammadi M, Moghani JS, Milimonfared J (2018) A novel dual switching frequency modulation for Z-source and quasi-Z-source inverters. IEEE Trans Ind Electron 65(6):5167–5176. https://doi.org/10.1109/TIE.2017.2784346

    Article  Google Scholar 

  5. Md Rafi FH, Hossain MJ, Town G, Lu J (2019) Smart voltage-source inverters with a novel approach to enhance neutral-current compensation. IEEE Trans Ind Electron 66(5):3518–3529. https://doi.org/10.1109/tie.2018.2856188

    Article  Google Scholar 

  6. Wang Y, Xie W, Wang X, Gerling D (2018) A precise voltage distortion compensation strategy for voltage source inverters. IEEE Trans Ind Electron 65(1):59–66. https://doi.org/10.1109/TIE.2017.2716866

    Article  Google Scholar 

  7. Lorenzani E, Migliazza G, Immovilli F, Buticchi G (2019) CSI and CSI7 current source inverters for modular transformerless PV inverters. Chin J Electr Eng 5(2):32–42. https://doi.org/10.23919/CJEE.2019.000009

    Article  Google Scholar 

  8. Ponce-Silva M, Aqui JA, Olivares-Peregrino VH, Oliver-Salazar MA (2016) Assessment of the current-source, full-bridge inverter as power supply for ozone generators with high power factor in a single stage. IEEE Trans Power Electron 31(12):8195–8204. https://doi.org/10.1109/TPEL.2016.2520925

    Article  Google Scholar 

  9. Guo X, Xu D, Wu B (2015) Four-leg current-source inverter with a new space vector modulation for common-mode voltage suppression. IEEE Trans Ind Electron 62(10):6003–6007. https://doi.org/10.1109/TIE.2015.2417127

    Article  Google Scholar 

  10. Abdelhakim A, Mattavelli P, Davari P, Blaabjerg F (2018) Performance evaluation of the single-phase split-source inverter using an alternative DC–AC configuration. IEEE Trans Ind Electron 65(1):363–373. https://doi.org/10.1109/TIE.2017.2714122

    Article  Google Scholar 

  11. Babaei E, Shokati Asl E (2016) A new topology for Z-source half-bridge inverter with low voltage stress on capacitors. Electr Power Syst Res 140(10):724–734. https://doi.org/10.1016/j.epsr.2016.04.010

    Article  Google Scholar 

  12. Ho A, Chun T (2018) Single-phase modified quasi-Z-source cascaded hybrid five-level inverter. IEEE Trans Ind Electron 65(6):5125–5134. https://doi.org/10.1109/TIE.2017.2779419

    Article  Google Scholar 

  13. Shen H, Zhang B, Qiu D, Zhou L (2016) A common grounded Z-source DC–DC converter with high voltage gain. IEEE Trans Ind Electron 63(5):2925–2935. https://doi.org/10.1109/TIE.2016.2516505

    Article  Google Scholar 

  14. Vinnikov D, Roasto I (2011) Quasi-Z-source based isolated DC/DC converters for distributed power generation. IEEE Trans Ind Electron 58(1):192–201. https://doi.org/10.1109/TIE.2009.2039460

    Article  Google Scholar 

  15. Vinnikov D, Roasto I, Strzelecki R, Adamowicz M (2012) Step up DC/DC converters with cascaded quasi-Z-source network. IEEE Trans Power Electron 59(10):3727–3735. https://doi.org/10.1109/TIE.2011.2178211

    Article  Google Scholar 

  16. Galigekere VP, Kazimierczuk MK (2012) Analysis of PWM Z-source DC–DC converter in CCM for steady state. IEEE Trans Circuits Syst 59(4):854–863. https://doi.org/10.1109/TCSI.2011.2169742

    Article  MathSciNet  Google Scholar 

  17. Babaei E, Shokati Asl E, Hasan Babayi M (2016) Steady-state and small-signal analysis of high voltage gain half-bridge switched-boost inverter. IEEE Trans Ind Electron 63(6):3546–3553. https://doi.org/10.1109/tie.2016.2523919

    Article  Google Scholar 

  18. Liu J, Wu J, Qiu J, Zeng J (2019) Switched Z-source/quasi-Z-source DC–DC converters with reduced passive components for photovoltaic systems. IEEE Access 7:40893–40903. https://doi.org/10.1109/ACCESS.2019.2907300

    Article  Google Scholar 

  19. Tang Y, Wei J, Xie Sh (2013) Grid-tied photovoltaic system with series Z-source inverter. IET Renew Power Gener 7(3):275–283. https://doi.org/10.1049/iet-rpg.2012.0335

    Article  Google Scholar 

  20. Loh PC, Vilathgamuwa DM, Gajanayake CJ, Wong LT, Ang CP (2007) Z-source current type inverters: digital modulation and logic implementation. IEEE Trans Power Electron 22(1):169–177. https://doi.org/10.1109/IAS.2005.1518460

    Article  Google Scholar 

  21. Ravindranath A, Mishra SK, Joshi A (2013) Analysis and PWM control of switched boost inverter. IEEE Trans Power Electron 60(12):5593–5602. https://doi.org/10.1109/TIE.2012.2230595

    Article  Google Scholar 

  22. Ho A, Chun T, Kim H (2015) Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters. IEEE Trans Power Electron 30(10):5681–5690. https://doi.org/10.1109/TPEL.2014.2379651

    Article  Google Scholar 

  23. Babaei E, Shokati Asl E, Hasan Babayi M, Laali S (2016) Developed embedded switched-Z-source inverter. IET Power Electron 9(9):1828–1841. https://doi.org/10.1049/iet-pel.2015.0921

    Article  Google Scholar 

  24. Pan L (2014) L-Z-source inverter. IEEE Trans Power Electron 29(12):6534–6543

    Article  Google Scholar 

  25. Gajanayake CJ, Luo FL, Gooi HB, LamSo P, Siow LK (2010) Extended boost Z-source inverters. IEEE Trans Power Electron 25(10):2642–2652. https://doi.org/10.1109/TPEL.2010.2050908

    Article  Google Scholar 

  26. Li D, Loh PC, Zhu M, Gao F, Blaabjerg F (2013) Cascaded multi cell trans-Z-source inverters. IEEE Trans Power Electron 28(2):826–836. https://doi.org/10.1109/TPEL.2012.2205709

    Article  Google Scholar 

  27. Li D, Loh PC, Zhu M, Gao F, Blaabjerg F (2013) Generalized multi cell switched inductor and switched capacitor Z-source inverters. IEEE Trans Power Electron 28(2):837–848. https://doi.org/10.1109/TPEL.2012.2204776

    Article  Google Scholar 

  28. Zhou Y, Liu L, Li H (2013) A high performance photovoltaic module integrated converter (MIC) based on cascaded quasi-Z-source inverters (qZSI) using eGaN FETs. IEEE Trans Power Electron 28(6):2727–2738. https://doi.org/10.1109/TPEL.2012.2219556

    Article  Google Scholar 

  29. Pursiheimo E, Holttinen H, Koljonen T (2019) Inter-sectoral effects of high renewable energy share in global energy system. Renew Energy 136:1119–1129. https://doi.org/10.1016/j.renene.2018.09.082

    Article  Google Scholar 

  30. Navratila J, Pichab K, Bucheckerc M, Martinatd S, Svece R, Brezinovaa M, Knotek J (2019) Visitors’preferences of renewable energy options in “green” hotels. Renew Energy 138:1065–1077. https://doi.org/10.1016/j.renene.2019.02.043

    Article  Google Scholar 

  31. Choudhury S, Bhowmik P, Rout PK (2018) Robust dynamic fuzzy-based enhanced VPD/FQB controller for load sharing in microgrid with distributed generators. Electr Eng 100:2457. https://doi.org/10.1007/s00202-018-0724-6

    Article  Google Scholar 

  32. Ahmed T, Mekhilef S (2015) Semi-Z-source inverter topology for grid-connected photovoltaic system. IET Power Electron 8(1):63–75. https://doi.org/10.1049/iet-pel.2013.0486

    Article  Google Scholar 

  33. Can E (2017) Novel high multilevel inverters investigated on simulation. Electr Eng 99:633. https://doi.org/10.1007/s00202-016-0396-z

    Article  Google Scholar 

  34. Rodrıguez JRR, Goytiaa ELM, Rebollar VV, Gaona DC, Felixc RA, Caballero LEU (2016) Current-sensorless control of an SPWM H-Bridge-based PFC rectifier designed considering voltage sag condition. Electr Power Syst Res 130:181–191. https://doi.org/10.1016/j.epsr.2015.09.005

    Article  Google Scholar 

  35. Yegane MSO, Sarvi M (2018) an improved harmonic injection PWM-frequency modulated triangular carrier method with multiobjective optimizations for inverters. Electr Power Syst Res 160:372–380. https://doi.org/10.1016/j.epsr.2018.03.011

    Article  Google Scholar 

  36. Zeb K, Uddin W, Haider A et al (2018) Electr Eng 100:787. https://doi.org/10.1007/s00202-017-0553-z

    Article  Google Scholar 

  37. Öztürk N, Kaplan O, Çelik E (2018) Zero-current switching technique for constant voltage constant frequency sinusoidal PWM inverter. Electr Eng 100:1147. https://doi.org/10.1007/s00202-017-0577-4

    Article  Google Scholar 

  38. Kanchan RS, Gopakumar K, Kennel R (2007) Synchronised carrier-based SVPWM signal generation scheme fort the entire modulation range extending up to six-step mode using the sampled amplitudes of reference phase voltages. IET Electr Power Appl 1(3):407–415. https://doi.org/10.1049/iet-epa:20060466

    Article  Google Scholar 

  39. Bouea ABR, Rodrigob FM, Rodríguezc NFG, de Lucasb LCH, de Pablo S (2018) Enhanced controller for grid-connected modular multilevel converters in distorted utility grids. Electr Power Syst Res 163:310–327. https://doi.org/10.1016/j.epsr.2018.06.011

    Article  Google Scholar 

  40. Lakshminarayanan S, Gopakumar K, Mondal G, Dinesh NS (2008) Eighteen-sided polygonal voltage space-vector based PWM control for an IM drive. IET Electr Power Appl 2(1):56–63. https://doi.org/10.1049/iet-epa:20070269

    Article  Google Scholar 

  41. Ghaderi D (2019) THD minimization for Z-source based inverters with a novel sinusoidal PWM switching method, TURK. J Electr Eng Comput Sci 27:3098–3113. https://doi.org/10.3906/elk-1809-46

    Article  Google Scholar 

  42. Hart DW (2011) Power electronics. McGraw-Hill, New York. ISBN: 007741795X, 9780077417956

  43. Kazimierczuk MK, Massarini A (1997) Feedforward control of DC–DC PWM boost converter. IEEE Trans Circuits Syst I Fundam Theory Appl 44(2):143–148. https://doi.org/10.1109/81.554332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Ghaderi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, D., Molaverdi, D., Kokabi, A. et al. A multi-phase impedance source inverter with an improved controller structure. Electr Eng 102, 683–700 (2020). https://doi.org/10.1007/s00202-019-00903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00903-9

Keywords

Navigation