Skip to main content

Advertisement

Log in

Implementation of different randomized PWM schemes using Atmega328p microcontroller for EMI reduction in boost converter

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The randomized pulse width modulation techniques are used to reduce electromagnetic interference in power converters by spreading the harmonic energy. Thus, a wider spectrum with lower amplitudes is obtained. Based on the pulse width modulation signal parameters, three main randomized techniques are achieved: the random carrier frequency modulation, the random pulse width modulation and the random pulse position modulation. This paper presents a short review of the different implementation methods. Then, a detailed implementation of the three considered random techniques using Atmega328p microcontroller is detailed. Finally, an analysis of the experimental conducted electromagnetic noise taken from a boost converter is discussed. These results prove that the random carrier frequency modulation approach is completely better than other techniques in terms of electromagnetic noise reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khaligh A, Dusmez S (2012) Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans Veh Technol 61:3475–3489

    Google Scholar 

  2. Deepak R, Apoorva K, Sheldon SW (2019) Extreme fast charging technology—prospects to enhance sustainable electric transportation. Energies 12:3721

    Google Scholar 

  3. Khaligh A, D’Antonio M (2019) Global trends in high-power on-board chargers for electric vehicles. IEEE Trans Veh Technol 68:3306–3324

    Google Scholar 

  4. John R, Lea DG, Christopher M, Ali E (2019) Automotive traction inverters: current status and future trends. IEEE Trans Veh Technol 68:3337–3350

    Google Scholar 

  5. Bekheïra T, Sofiene D, Mohamed B, Demba D, Abdelaziz K (2017) Direct torque control of five-leg inverter-dual induction motor powertrain for electric vehicles. Electr Eng 99:1073–1085

    Google Scholar 

  6. Nguyen VH, Huynh HA, Kim S, Song H (2018) Active EMI reduction using chaotic modulation in a buck converter with relaxed output LC filter. Electronics 7:0254

    Google Scholar 

  7. Hong L, Zhichang Y, Boyu W, Vassilios GA, Bo Z (2017) On thermal impact of chaotic frequency modulation SPWM techniques. IEEE Trans Ind Electron 64:2032–2043

    Google Scholar 

  8. Ma K, Blaabjerg F (2012) The impact of power switching devices on the thermal performance of a 10 MW wind power NPC converter. Energies 5:2559–2577

    Google Scholar 

  9. Yazdani MR, Farzanehfard H, Faiz J (2011) Classification and comparison of EMI mitigation techniques in switching power converters—a review. J Power Electron 11:767–777

    Google Scholar 

  10. Mainali K, Oruganti R (2010) Conducted EMI mitigation techniques for switch-mode power converters: a survey. IEEE Trans Power Electron 25:2344–2356

    Google Scholar 

  11. Chu Y, Wang S, Wang Q (2016) Modeling and stability analysis of active/hybrid common-mode EMI filters for DC/DC power converters. IEEE Trans Power Electron 31:6254–6263

    Google Scholar 

  12. Bhargava A, Pommerenke D, Kam KW, Centola F, Lam CW (2011) DC–DC buck converter EMI reduction using PCB layout modification. IEEE Trans Electromagn Compat 53:806–813

    Google Scholar 

  13. Tseng CJ, Chen CL (1998) A passive loss less snubber cell for non-isolated PWM DC/DC converters. IEEE Trans Ind Electron 45:593–601

    Google Scholar 

  14. Dylan H (2018) Reducing noise on the output of a switching regulator. Analog Design Journal, Texas Instruments

    Google Scholar 

  15. Yakup S, Naim ST (2018) Soft switching passive snubber cell for family of PWM DC–DC converters. Electr Eng 100:1785–1796

    Google Scholar 

  16. Lobsiger Y, Kolar JW (2015) Closed-loop di/dt and dv/dt IGBT gate driver. IEEE Trans Power Electron 30:3402–3417

    Google Scholar 

  17. Kapat S (2016) Reconfigurable periodic bifrequency DPWM with custom harmonic reduction in dc–dc converters. IEEE Trans Power Electron 31:3380–3388

    Google Scholar 

  18. Gonzalez D, Balcells J, Santolaria A, Le Bunetel JC, Gago J, Magnon D, Brehaut S (2007) Conducted EMI reduction in power converters by means of periodic switching frequency modulation. IEEE Trans Power Electron 22:2271–2281

    Google Scholar 

  19. Zhao C, Costinett D (2017) GaN-based, dual-mode wireless power transfer using multi-frequency programmed pulse width modulation. IEEE Trans Ind Electron 64:9165–9176

    Google Scholar 

  20. Wang AC, Sanders SR (1993) Programmed pulsewidth modulated waveforms for electromagnetic interference mitigation in dc–dc converters. IEEE Trans Power Electron 8:596–605

    Google Scholar 

  21. Dahidah MS, Konstantinou G, Agelidis VG (2015) A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications. IEEE Trans Power Electron 30:4091–4106

    Google Scholar 

  22. Adrian V, Chang JS, Gwee BH (2010) A Randomized wrapped-around pulse position modulation scheme for DC–DC converters. IEEE Trans Circuit Syst 57:2320–2333

    MathSciNet  Google Scholar 

  23. Qi C, Chen X, Qiu Y (2013) Carrier-based randomized pulse position modulation of an indirect matrix converter for attenuating the harmonic peaks. IEEE Trans Power Electron 28:3539–3548

    Google Scholar 

  24. Mathe L, Lungeanu F, Sera D, Rasmussen PO, Pedersen JK (2012) Spread spectrum modulation by using asymmetric-carrier random PWM. IEEE Trans Ind Electron 59:3710–3718

    Google Scholar 

  25. Elrayyah A, Namburi KMPK, Sozer Y, Husain I (2014) An effective dithering method for electromagnetic interference (EMI) reduction in single-phase DC/AC inverters. IEEE Trans Power Electron 29:2798–2806

    Google Scholar 

  26. Boudjerda N, Boudouda A, Melit M, Nekhoul B, El Khamlichi Drissi K, Kerroum K (2011) Optimized dual randomized PWM technique for reducing conducted EMI in DC–AC converters. In: 10th international conference on electromagnetic compatibility (EMC Europe 2011), York, UK, September 2011

  27. Lin F, Chen DY (1994) Reduction of power supply EMI emission by switching frequency modulation. IEEE Trans Power Electron 9:132–137

    Google Scholar 

  28. Hardin KB, Fessler JT, Bush R (1994) Spread spectrum clock generation for the reduction of radiated emissions. In: Proceedings of the IEEE symposium on electromagnetic compatibility, Chicago, IL, USA, 22–26 August 1994

  29. Johnson S, Zane R (2005) custom spectral shaping for EMI reduction in high-frequency inverters and ballasts. IEEE Trans Power Electron 20:1499–1505

    Google Scholar 

  30. Davari P, Hoene E, Zare F, Blaabjerg F (2018) Improving 9–150 kHz performance of single-phase PFC rectifier. In: Proceedings of the 10th international conference on integrated power electronics systems (CIPS), Stuttgart, Germany, 20–22 March 2018

  31. Gamoudi R, Chariag DE, Sbita L (2018) A review of spread-spectrum-based PWM techniques—a novel fast digital implementation. IEEE Trans Power Electron 33:10292–10307

    Google Scholar 

  32. Li H, Liu YD, Lu JH, Zheng T, Yu XH (2014) Suppressing EMI in power converters via chaotic SPWM control based on spectrum analysis approach. IEEE Trans Ind Electron 61:6128–6137

    Google Scholar 

  33. Yang R, Zhang B, Qiu D, Liu Z (2009) Time–frequency and wavelet transforms of EMI dynamic spectrum in chaotic converter. IEEE Trans Power Electron 24:1083–1092

    Google Scholar 

  34. Kuo MT, Tsou MC (2017) Novel frequency swapping technique for conducted electromagnetic interference suppression in power converter applications. Energies 10:24

    Google Scholar 

  35. Dousoky GM, Shoyama M, Ninomiya T (2011) FPGA-based spread spectrum schemes for conducted-noise mitigation in dc–dc power converters: design, implementation, and experimental investigation. IEEE Trans Ind Electron 58:429–435

    Google Scholar 

  36. Van Toan N, Tung D. M, Lee J. G (2016) Design of a multi-frequency clocking circuit on an FPGA and analysis of its EMI emission. In: Proceedings of Asia-Pacific international symposium on electromagnetic compatibility, vol 1, pp 598–600

  37. Natarajan S, Natarajan R (2014) An FPGA chaos-based PWM technique combined with simple passive filter for effective EMI spectral peak reduction in dc–dc converter. Adv Power Electron 2014:1–11

    Google Scholar 

  38. Ki-Seon K, Young-Gook J, Young-Cheol L (2009) A new hybrid random PWM scheme. IEEE Trans Power Electron 24:192–200

    Google Scholar 

  39. Jarin T, Subburaj P, Bright SJV (2015) Performance evaluation and experimental validation of random pulse position PWM for industrial drives. Afr J Basic Appl Sci 7:137–146

    Google Scholar 

  40. Jarin T, Gao XZ (2017) FPGA based analysis of non-deterministic PWM in induction motor drives. Asian J Appl Sci Technol 1:56–60

    Google Scholar 

  41. Sreej P, Muthukumar P, Padmasuresh L (2018) Boost up of random pulse width modulation over sinusoidal pulse width modulation for three phase voltage source inverter. Int J Pure Appl Math 119:407–429

    Google Scholar 

  42. Soumya C, Jarin T (2017) A novel random carrier frequency modulation technique for drive applications. Asian J Appl Sci Technol 1:526–533

    Google Scholar 

  43. Muthukumar P, Melba Mary P, Deepaprincy V, Monica F (2014) Performance analysis of mixed carrier-pulse width modulation scheme. Res J Appl Sci Eng Technol 8:2356–2362

    Google Scholar 

  44. Chen G, Wu Z, Zhu Y, Zhao J (2012) Realization of random space vector pulse width modulation based on infineon tricore TC1767/TC1797. Int J Digit Content Technol Appl 6:624–632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhia Chariag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chariag, D., Sbita, L. Implementation of different randomized PWM schemes using Atmega328p microcontroller for EMI reduction in boost converter. Electr Eng 102, 1063–1071 (2020). https://doi.org/10.1007/s00202-020-00934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-00934-7

Keywords

Navigation