Skip to main content

Advertisement

Log in

A novel strategy for indirect control of peak dc-link voltage of grid-connected qZS inverter fed through renewable energy sources

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a novel strategy to indirectly control the peak dc-link voltage (PDV) of grid-connected quasi-Z-source (qZS) inverter supplied with renewable energy sources (RES). The method is directed to indirectly determine and regulate the pulsating PDV through the qZS network capacitor voltages. The small signal model is developed by representing ac- and dc-sides separately. The ac-side control is designed with higher bandwidth to avoid interference from dc-side. The dc-side control utilizes shoot-through duty ratio to PDV transfer function and controller is designed to minimize the effect of its right-half-plane zero (RHPZ) characteristics. The gating signals are realized through maximum constant boost control in conjunction with one-sixth of third harmonic injection. The strategy is implemented through MATLAB/Simulink and is verified experimentally with real-time simulations (RTSs) in OPAL-RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Huang Y, Shen M, Peng FZ, Wang J (2006) \(Z\)-source inverter for residential photovoltaic systems. IEEE Trans Power Electron 21(6):1776–1782. https://doi.org/10.1109/TPEL.2006.882913

    Google Scholar 

  2. Peng FZ (2003) Z-source inverter. IEEE Trans Ind Appl 39(2):504–510. https://doi.org/10.1109/TIA.2003.808920

    Google Scholar 

  3. Peng FZ, Shen M, Qian Z (2005) Maximum boost control of the Z-source inverter. IEEE Trans Power Electron 20(4):833–838. https://doi.org/10.1109/TPEL.2005.850927

    Google Scholar 

  4. Shen M, Wang J, Joseph A, Peng FZ, Tolbert LM, Adams DJ (2006) Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Trans Ind Appl 42(3):770–778. https://doi.org/10.1109/TIA.2006.872927

    Google Scholar 

  5. Loh PC, Vilathgamuwa DM, Lai YS, Chua GT, Li Y (2005) Pulse-width modulation of Z-source inverters. IEEE Trans Power Electron 20(6):1346–1355. https://doi.org/10.1109/TPEL.2005.857543

    Google Scholar 

  6. Anderson J, Peng FZ (2008) Four quasi-Z-source inverters. In: 2008 IEEE power electronics specialists conference, pp 2743–2749. https://doi.org/10.1109/PESC.2008.4592360

  7. Li Y, Anderson J, Peng FZ, Liu D (2009) Quasi-Z-source inverter for photovoltaic power generation systems. In: 2009 Twenty-fourth annual IEEE applied power electronics conference and exposition, pp 918–924. https://doi.org/10.1109/APEC.2009.4802772

  8. Ding X, Qian Z, Yang S, Cui B, Peng F (2007) A direct peak DC-link boost voltage control strategy in Z-source inverter. In: APEC 07 - Twenty-second annual IEEE applied power electronics conference and exposition, pp 648–653. https://doi.org/10.1109/APEX.2007.357583

  9. Tang Y, Wei J, Xie S (2010) A new direct peak dc-link voltage control strategy of Z-source inverters. In: 2010 Twenty-fifth annual IEEE applied power electronics conference and exposition (APEC), pp 867–872. https://doi.org/10.1109/APEC.2010.5433565

  10. Qin C, Zhang C, Xing X, Li X, Chen A, Zhang G (2019) Simultaneous common-mode voltage reduction and neutral-point voltage balance scheme for the quasi-Z-source three-level T-type inverter. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2019.2907501

    Google Scholar 

  11. Vilathgamuwa DM, Gajanayake CJ, Loh PC (2009) Modulation and control of three-phase paralleled Z-source inverters for distributed generation applications. IEEE Trans Energy Convers 24(1):173–183. https://doi.org/10.1109/TEC.2008.2002314

    Google Scholar 

  12. Liu Y, Ge B, Peng FZ, Haitham AR, d Almeida AT, Ferreira FJTE (2011) Quasi-Z-source inverter based PMSG wind power generation system. In: 2011 IEEE energy conversion congress and exposition, pp 291–297. https://doi.org/10.1109/ECCE.2011.6063782

  13. Liu Y, Ge B, Abu-Rub H (2014) Modelling and controller design of quasi-Z-source cascaded multilevel inverter-based three-phase grid-tie photovoltaic power system. IET Renew Power Gener 8(8):925–936. https://doi.org/10.1049/iet-rpg.2013.0221

    Google Scholar 

  14. Gajanayake CJ, Vilathgamuwa DM, Loh PC (2007) Development of a comprehensive model and a multiloop controller for Z-source inverter DG systems. IEEE Trans Ind Electron 54(4):2352–2359. https://doi.org/10.1109/TIE.2007.894772

    Google Scholar 

  15. Tang Y, Wei J, Xie S (2013) Grid-tied photovoltaic system with series Z-source inverter. IET Renew Power Gener 7(3):275–283. https://doi.org/10.1049/iet-rpg.2012.0335

    Google Scholar 

  16. Sen G, Elbuluk ME (2010) Voltage and current-programmed modes in control of the Z-source converter. IEEE Trans Ind Appl 46(2):680–686. https://doi.org/10.1109/TIA.2010.2040054

    Google Scholar 

  17. Ellabban O, Mierlo JV, Lataire P (2012) A DSP-based dual-loop peak DC-link voltage control strategy of the Z-source inverter. IEEE Trans Power Electron 27(9):4088–4097. https://doi.org/10.1109/TPEL.2012.2189588

    Google Scholar 

  18. Liu Y, Abu-Rub H, Xue Y, Tao F (2018) A discrete-time average model-based predictive control for a quasi-Z-source inverter. IEEE Trans Ind Electron 65(8):6044–6054. https://doi.org/10.1109/TIE.2017.2787050

    Google Scholar 

  19. Tran QV, Chun TW, Ahn JR, Lee HH (2007) Algorithms for controlling both the DC boost and AC output voltage of Z-source inverter. IEEE Trans Ind Electron 54(5):2745–2750. https://doi.org/10.1109/TIE.2007.895146

    Google Scholar 

  20. Ding X, Qian Z, Yang S, Cui B, Peng F (2007) A PID control strategy for DC-link boost voltage in Z-source inverter. In: APEC 07 - Twenty-second annual IEEE applied power electronics conference and exposition, pp 1145–1148. https://doi.org/10.1109/APEX.2007.357659

  21. Gajanayake CJ, Vilathgamuwa DM, Loh PC, Teodorescu R, Blaabjerg F (2009) Z-source-inverter-based flexible distributed generation system solution for grid power quality improvement. IEEE Trans Energy Convers 24(3):695–704. https://doi.org/10.1109/TEC.2009.2025318

    Google Scholar 

  22. Kim T (2018) Consolidated control of a dual dc-link converter with an energy storage. Electric Power Compon Syst 46(18):1948–1958. https://doi.org/10.1080/15325008.2018.1528314

    Google Scholar 

  23. Li Y, Jiang S, Cintron-Rivera JG, Peng FZ (2013) Modeling and control of quasi-Z-source inverter for distributed generation applications. IEEE Trans Ind Electron 60(4):1532–1541. https://doi.org/10.1109/TIE.2012.2213551

    Google Scholar 

  24. Zhu H, Yu D, Zhu W, Zhou Z (2016) DC-link voltage regulation of bidirectional quasi-Z-source inverter for electric vehicle applications. In: 2016 IEEE vehicle power and propulsion conference (VPPC), pp 1–5. https://doi.org/10.1109/VPPC.2016.7791645

  25. Li Y, Peng FZ (2012) AC small signal modeling, analysis and control of quasi-Z-source converter. In: Proceedings of the 7th international power electronics and motion control conference, vol 3, pp 1848–1854. https://doi.org/10.1109/IPEMC.2012.6259119

  26. Shinde UK, Kadwane SG, Gawande SP, Reddy MJB, Mohanta DK (2017) Sliding mode control of single-phase grid-connected quasi-Z-source inverter. IEEE Access 5:10232–10240. https://doi.org/10.1109/ACCESS.2017.2708720

    Google Scholar 

  27. Ge B, Peng FZ, Abu-Rub H, Ferreira FJTE, de Almeida AT (2014) Novel energy stored single-stage photovoltaic power system with constant DC-link peak voltage. IEEE Trans Sustain Energy 5(1):28–36. https://doi.org/10.1109/TSTE.2013.2272437

    Google Scholar 

  28. Patidar K, Umarikar AC (2014) Control of DC-link voltage in quasi Z-source inverter by using one cycle control method. In: 2014 IEEE international conference on power electronics, drives and energy systems (PEDES), pp 1–5. https://doi.org/10.1109/PEDES.2014.7041999

  29. Law KH (2018) An effective voltage controller for quasi-Z-source inverter-based STATCOM with constant DC-link voltage. IEEE Trans Power Electron 33(9):8137–8150. https://doi.org/10.1109/TPEL.2017.2772309

    Google Scholar 

  30. Zhang J (2018) Unified control of Z-source grid-connected photovoltaic system with reactive power compensation and harmonics restraint: design and application. IET Renew Power Gener 12(4):422–429. https://doi.org/10.1049/iet-rpg.2016.0478

    Google Scholar 

  31. Yazdani A, Iravani R (2010) Voltage-sourced converters in power systems: modeling, control, and applications. Wiley, Hoboken

    Google Scholar 

  32. Franklin G, Powell J, Workman M (2006) Feedback control of dynamic systems. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  33. Ge B, Abu-Rub H, Peng FZ, Lei Q, de Almeida AT, Ferreira FJTE, Sun D, Liu Y (2013) An energy-stored quasi-Z-source inverter for application to photovoltaic power system. IEEE Trans Ind Electron 60(10):4468–4481. https://doi.org/10.1109/TIE.2012.2217711

    Google Scholar 

  34. Teodorescu R, Blaabjerg F, Liserre M, Loh PC (2006) Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc Electric Power Appl 153(5):750–762. https://doi.org/10.1049/ip-epa:20060008

    Google Scholar 

  35. Singh B, Kumar S, Jain C (2017) Damped-SOGI-based control algorithm for solar PV power generating system. IEEE Trans Ind Appl 53(3):1780–1788. https://doi.org/10.1109/TIA.2017.2677358

    Google Scholar 

  36. Bacha S, Munteanu I, Bratcu AI (2014) Power electronic converters modeling and control. Springer, Berlin

    Google Scholar 

  37. Shen M, Joseph A, Wang J, Peng FZ, Adams DJ (2007) Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans Power Electron 22(4):1453–1463. https://doi.org/10.1109/TPEL.2007.900505

    Google Scholar 

  38. HAVELLS, enviro Solar Module. http://www.havells.com/content/dam/havells/brouchers/Solar/Solar%20Module%20Catalogue.pdf Accessed 24 April 2019

  39. IEEE Std (2003) IEEE standard for interconnecting distributed resources with electric power systems. 1547-2003, pp 1–28. https://doi.org/10.1109/IEEESTD.2003.94285

  40. Bélanger J, Venne P, Paquin JN (2010) The what, where and why of real-time simulation. Planet Rt 1(1):25–29

    Google Scholar 

  41. Li W, Joos G, Bélanger J (2010) Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system. IEEE Trans Ind Electron 57(4):1137–1145. https://doi.org/10.1109/TIE.2009.2037103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Jain, S.K. A novel strategy for indirect control of peak dc-link voltage of grid-connected qZS inverter fed through renewable energy sources. Electr Eng 102, 611–625 (2020). https://doi.org/10.1007/s00202-019-00897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00897-4

Keywords

Navigation