Skip to main content

Advertisement

Log in

Soluble ST2 and Soluble Markers of Fibrosis: Emerging Roles for Prognosis and Guiding Therapy

  • Cardiac Biomarkers (CR deFilippi, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Biomarkers of cardiac fibrosis closely track the disease state that gives rise to heart failure. The purpose of this review is to highlight recent data on the use of soluble ST2, galectin-3, and procollagen, three markers of cardiac fibrosis, for aiding with prognostication, and to explore the use of these biomarkers for guiding therapy.

Recent Findings

Soluble ST2, galectin-3, and procollagen are prognostic in both acute and chronic heart failure, and data are emerging as to their potential uses for guiding therapies. Mortality benefit from exercise, cardiac resynchronization therapy, statin use, as well as anti-fibrotic therapies such as aldosterone antagonism may vary based upon levels of these fibrosis markers.

Summary

Soluble ST2, galectin-3, and procollagen provide independent prognostic information for heart failure morbidity and mortality. Markers of cardiac fibrosis may also help identify the subsets of patients who are most likely to benefit from various therapies. However, further studies are needed prior to formalizing individual patient care algorithms guided by fibrosis biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nishimura M, Sharim J, Horiuchi Y, Barnett O, Wettersten N, Maisel A. Soluble ST2: a biomarker to monitor heart failure progression and treatment. J Clin Prev Cardiol. 2018;7:148.

    Article  Google Scholar 

  2. De la Fuente M, MacDonald TT, Hermoso MA. The IL-33/ST2 axis: role in health and disease. Cytokine Growth Factor Rev. Elsevier Ltd. 2015;26:615–23.

  3. Tseng CCS. The interleukin-33/ST2 pathway is expressed in the failing human heart and associated with pro-fibrotic remodeling of the myocardium. J Cardiovasc Transl Res. 2017:8–14.

  4. Maisel AS, Di Somma S. Do we need another heart failure biomarker: focus on soluble suppression of tumorigenicity 2 (sST2). Eur Heart J. 2016:ehw462.

  5. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–49.

    Article  CAS  Google Scholar 

  6. Dieplinger B, Januzzi JL, Steinmair M, Gabriel C, Poelz W, Haltmayer M, et al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma—the PresageTM ST2 assay. Clin Chim Acta. Elsevier. 2009;409:33–40.

  7. • Defilippi CR, Herzog CA. Interpreting cardiac biomarkers in the setting of chronic kidney disease. Clin Chem. 2017;63:59–65 This review provides a platform for interpreting cardiac-specific biomarkers in the setting of chronic kidney disease.

    Article  CAS  Google Scholar 

  8. Gegenhuber A, Struck J, Dieplinger B, Poelz W, Pacher R, Morgenthaler NG, et al. Comparative evaluation of B-type natriuretic peptide, mid-regional pro-A-type natriuretic peptide, mid-regional pro-adrenomedullin, and copeptin to predict 1-year mortality in patients with acute destabilized heart failure. J Card Fail. Churchill Livingstone. 2007;13:42–9.

  9. Januzzi JL, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea. Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.

    Article  CAS  Google Scholar 

  10. Shah RV, Chen-Tournoux AA, Picard MH, Van Kimmenade RRJ, Januzzi JL. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ Heart Fail. 2009;2:311–9.

    Article  CAS  Google Scholar 

  11. •• Aimo A, Vergaro G, Ripoli A, Bayes-Genis A, Pascual Figal DA, de Boer RA, et al. Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. JACC Heart Fail. 2017;5:287–96 This meta-analysis encompassing 4835 patients examined the prognostic ability of sST2 levels in acute heart failure patients with respect to mortality and rehospitalization rates.

    Article  Google Scholar 

  12. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. Elsevier Inc. 2008;14:732–8.

  13. Manzano-Fernández S, Januzzi JL, Pastor-Pérez FJ, Bonaque-González JC, Boronat-Garcia M, Pascual-Figal DA, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122:158–66.

    Article  Google Scholar 

  14. Wang TJ, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012;126:1596–604.

    Article  CAS  Google Scholar 

  15. • Parikh RH, Seliger SL, Christenson R, Gottdiener JS, Psaty BM, deFilippi CR. Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. J Am Heart Assoc. 2016;5:e003188 This is a longitudinal observational study that examined the prognostic ability of sST2 levels in community-dwelling elderly patients without a prior diagnosis of heart failure.

    Article  Google Scholar 

  16. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012;58:1673–81.

    Article  CAS  Google Scholar 

  17. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. Massachussetts Medical Society. 2002;347:161–7.

  18. Mueller T, Dieplinger B. The Presage® ST2 assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn. 2013;13:13–30.

    Article  CAS  Google Scholar 

  19. Aimo A, Januzzi JL, Bayes-Genis A, Vergaro G, Sciarrone P, Passino C, et al. Clinical and prognostic significance of sST2 in heart failure: JACC Review Topic of the Week. J Am Coll Cardiol. Elsevier USA. 2019:2193–203.

  20. Daniels LB, Clopton P, Iqbal N, Tran K, Maisel AS. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am Heart J. 2010;160:721–8.

    Article  CAS  Google Scholar 

  21. Felker GM, Fiuzat M, Thompson V, Shaw LK, Neely ML, Adams KF, et al. Soluble ST2 in ambulatory patients with heart failure association with functional capacity and long-term outcomes. Circ Heart Fail. 2013;6:1172–9.

    Article  CAS  Google Scholar 

  22. Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JGF, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. Massachusetts Medical Society. 2007;357:2248–61.

  23. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14:268–77.

    Article  CAS  Google Scholar 

  24. Broch K, Leren IS, Saberniak J, Ueland T, Edvardsen T, Gullestad L, et al. Soluble ST2 is associated with disease severity in arrhythmogenic right ventricular cardiomyopathy. Biomarkers. 2017;22:367–71.

    Article  CAS  Google Scholar 

  25. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. Massachusetts Medical Society. 2003;348:1309–21.

  26. Weir RAP, Miller AM, Murphy GEJ, Clements S, Steedman T, Connell JMC, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. Elsevier. 2010;55:243–50.

  27. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. Massachusetts Medical Society. 2014;371:993–1004.

  28. • O’Meara E, Prescott MF, Claggett B, Rouleau JL, Chiang L-M, Solomon SD, et al. Independent prognostic value of serum soluble ST2 measurements in patients with heart failure and a reduced ejection fraction in the PARADIGM-HF trial (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure). Circ Heart Fail. 2018;11:e004446 This subanalysis of the PARADIGM-HF trial showed that patients randomized to sacubitril-valsartan had greater reductions in sST2 levels when compared with patients randomized to enalapril.

    Article  Google Scholar 

  29. • Zile MR, O’Meara E, Claggett B, Prescott MF, Solomon SD, Swedberg K, et al. Effects of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients With HFrEF. J Am Coll Cardiol. 2019;73:795–806 This study examined the effects of sacubitril-valsartan on biomarkers of extracellular matrix homeostasis, as well as the association between these biomarkers with cardiovascular death and rehospitalization rates.

    Article  CAS  Google Scholar 

  30. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:1387–95.

    Article  CAS  Google Scholar 

  31. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA, et al. Plasma biomarkers reflecting profibrotic processes in heart failure with a preserved ejection fraction: data from the prospective comparison of ARNI with ARB on management of heart failure with preserved ejection fraction study. Circ Heart Fail. American Heart Association, Inc. 2016;9:e002551.

  32. •• Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. Massachussetts Medical Society. 2019;381:1609–20. This randomized controlled trial found that sacubitril-valsartan had no effect on mortality and hospitalization rates in patients with heart failure with preserved ejection fraction.

  33. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. Massachussetts Medical Society. 2009;361:1329–38.

  34. • Skali H, Gerwien R, Meyer TE, Snider JV, Solomon SD, Stolen CM. Soluble ST2 and risk of arrhythmias, heart failure, or death in patients with mildly symptomatic heart failure: results from MADIT-CRT. J Cardiovasc Transl Res. Springer New York LLC. 2016;9:421–8. This subanalysis of the MADIT-CRT trial examined whether sST2 levels were predictive of the response to treatment with cardiac resynchronization therapy.

  35. Liquori ME, Christenson RH, Collinson PO, deFilippi CR. Cardiac biomarkers in heart failure. Clin Biochem. Elsevier. 2014;47:327–37.

  36. Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760:616–35.

    Article  CAS  Google Scholar 

  37. Sharma UC. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  CAS  Google Scholar 

  38. Leone M, Iacoviello M. The predictive value of plasma biomarkers in discharged heart failure patients: role of galectin-3. Minerva Cardioangiol. 2016;64:181–94.

    PubMed  Google Scholar 

  39. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci. 2006;103:5060–5.

    Article  CAS  Google Scholar 

  40. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008;172:288–98.

    Article  CAS  Google Scholar 

  41. MacKinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, et al. Regulation of transforming growth factor-β1–driven lung fibrosis by galectin-3. Am J Respir Crit Care Med. 2012;185:537–46.

    Article  CAS  Google Scholar 

  42. Lin Y-H, Lin L-Y, Wu Y-W, Chien K-L, Lee C-M, Hsu R-B, et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta. 2009;409:96–9.

    Article  CAS  Google Scholar 

  43. Ueland T, Aukrust P, Broch K, Aakhus S, Skårdal R, Muntendam P, et al. Galectin-3 in heart failure: high levels are associated with all-cause mortality. Int J Cardiol. Elsevier. 2011;150:361–4.

  44. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56.

    Article  CAS  Google Scholar 

  45. Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E. Galectin-3 is independently associated with cardiovascular mortality in community-dwelling older adults without known cardiovascular disease: the Rancho Bernardo study. Am Heart J. Mosby Inc. 2014;167.

  46. • Asleh R, Enriquez-Sarano M, Jaffe AS, Manemann SM, Weston SA, Jiang R, et al. Galectin-3 levels and outcomes after myocardial infarction. J Am Coll Cardiol. 2019;73:2286–95 This prospective study examined the prognostic ability of galectin-3 in patients with a myocardial infarction.

    Article  CAS  Google Scholar 

  47. van Kimmenade RR, Januzzi JL, Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. Elsevier. 2006;48:1217–24.

  48. Darden D, Nishimura M, Sharim J, Maisel A. An update on the use and discovery of prognostic biomarkers in acute decompensated heart failure. Expert Rev Mol Diagn. 2019;19:1019–29.

    Article  CAS  Google Scholar 

  49. •• Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society. Circulation. 2017;136:e137–61. The American College of Cardiology/American Heart Association guidelines for the management of patients with heart failure.

  50. Xue Y, Maisel A, Peacock WF. Using galectin-3 to reduce heart failure rehospitalization. Futur Cardiol. 2014;10:221–7.

    Article  CAS  Google Scholar 

  51. • Miró Ò, González de la Presa B, Herrero-Puente P, Fernández Bonifacio R, Möckel M, Mueller C, et al. The GALA study: relationship between galectin-3 serum levels and short- and long-term outcomes of patients with acute heart failure. Biomarkers. 2017;22:731–9 This study examined the prognostic ability of galectin-3 in patients presenting to the Emergency Department with acute heart failure.

    Article  Google Scholar 

  52. Lok DJA, Van Der Meer P, de la Porte PWB-A, Lipsic E, Van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. Springer-Verlag. 2010;99:323–8.

  53. Tang WHW, Shrestha K, Shao Z, Borowski AG, Troughton RW, Thomas JD, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. Excerpta Medica. 2011;108:385–90.

  54. Milting H, Ellinghaus P, Seewald M, Cakar H, Bohms B, Kassner A, et al. Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices. J Heart Lung Transplant. Elsevier. 2008;27:589–96.

  55. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur Heart J. 2012;33:2290–6.

    Article  CAS  Google Scholar 

  56. Stolen CM, Adourian A, Meyer TE, Stein KM, Solomon SD. Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). J Card Fail. Churchill Livingstone Inc. 2014;20:793–9.

  57. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5:72–8.

    Article  CAS  Google Scholar 

  58. Poulsen SH, Høst NB, Jensen SE, Egstrup K. Relationship between serum amino-terminal propeptide of type III procollagen and changes of left ventricular function after acute myocardial infarction. Circulation. 2000;101:1527–32.

    Article  CAS  Google Scholar 

  59. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. Massachusetts Medical Society. 1999;341:709–17.

  60. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure. Circulation. 2000;102:2700–6.

    Article  CAS  Google Scholar 

  61. Cicoira M, Rossi A, Bonapace S, Zanolla L, Golia G, Franceschini L, et al. Independent and additional prognostic value of aminoterminal propeptide of type III procollagen circulating levels in patients with chronic heart failure. J Card Fail. 2004;10:403–11.

    Article  CAS  Google Scholar 

  62. Dupuy AM, Kuster N, Curinier C, Huet F, Plawecki M, Solecki K, et al. Exploring collagen remodeling and regulation as prognosis biomarkers in stable heart failure. Clin Chim Acta. 2019;490:167–71.

    Article  CAS  Google Scholar 

  63. Barasch E, Gottdiener JS, Aurigemma G, Kitzman DW, Han J, Kop WJ, et al. Association between elevated fibrosis markers and heart failure in the elderly. Circ Heart Fail. 2009;2:303–10.

    Article  CAS  Google Scholar 

  64. Massoullié G, Sapin V, Ploux S, Rossignol P, Mulliez A, Jean F, et al. Low fibrosis biomarker levels predict cardiac resynchronization therapy response. Sci Rep. 2019;9:6103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori B. Daniels.

Ethics declarations

Conflict of Interest

Justin Sharim declares that he has no conflict of interest. Lori B. Daniels has received research supplies from Critical Diagnostics, has served as a consultant for Quidel and Roche, and has served on clinical endpoints adjudication committees for Abbott and Siemens.

Human and Animal Rights and Informed Consent

This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiac Biomarkers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharim, J., Daniels, L.B. Soluble ST2 and Soluble Markers of Fibrosis: Emerging Roles for Prognosis and Guiding Therapy. Curr Cardiol Rep 22, 41 (2020). https://doi.org/10.1007/s11886-020-01288-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01288-z

Keywords

Navigation