Skip to main content
Log in

Analysis of the minimal model for the enthalpy relaxation and recovery in glass transition: application to constant-rate differential scanning calorimetry

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The so-called minimal model is formulated for describing the enthalpy relaxation and recovery in glass transition. The model is based on the Arrhenius law for the enthalpy relaxation, which uses two-dimensional parameters, namely the activation energy and the so-called pre-factor (relaxation time at relatively high temperature). A numerically effective exact analytical solution is obtained for the case of constant-rate differential scanning calorimetry. The developed model is analyzed according to the logic of the model itself without introducing additional simplifying assumptions of thermodynamic nature. For typical range of the model parameters, the resulting differential equation contains a large parameter, which offers an opportunity for the application of asymptotic and approximate techniques. A number of simple approximations have been provided for some thermodynamic quantities of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hodge, I.M.: Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169(3), 211–266 (1994)

    Article  ADS  Google Scholar 

  2. Seibert, H., Scheffer, T., Diebels, S.: Thermomechanical characterisation of cellular rubber. Contin. Mech. Thermodyn. 28(5), 1495–1509 (2016)

    Article  ADS  Google Scholar 

  3. Leistner, C., Hartmann, S., Abliz, D., Ziegmann, G.: Modeling and simulation of the curing process of epoxy resins using finite elements. Contin. Mech. Thermodyn. 32, 327–350 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  4. Angell, C.A.: Perspective on the glass transition. J. Phys. Chem. Solids 49(8), 863–871 (1988)

    Article  ADS  Google Scholar 

  5. Scherer, G.W.: Theories of relaxation. J. Non-Cryst. Solids 123(1–3), 75–89 (1990)

    Article  ADS  Google Scholar 

  6. Gutzow, I., Schmelzer, J.W.P., Petroff, B.: Phenomenological theories of glass transition: classical approaches, new solutions and perspectives. J. Non-Cryst. Solids 354(2–9), 311–324 (2008)

    Article  ADS  Google Scholar 

  7. Bari, R., Simon, S.L.: Determination of the nonlinearity and activation energy parameters in the TNM model of structural recovery. J. Therm. Anal. Calorim. 131(1), 317–324 (2018)

    Article  Google Scholar 

  8. Mauro, J.C., Mauro, Y.Z.: On the Prony series representation of stretched exponential relaxation. Physica A Stat. Mech. Appl. 506, 75–87 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  9. Flügel, K., Hennig, R., Thommes, M.: Determination of the structural relaxation enthalpy using a mathematical approach. J. Pharmaceut. Sci. 108(11), 3675–3683 (2019)

  10. Lion, A., Yagimli, B.: Differential scanning calorimetry-continuum mechanical considerations with focus to the polymerisation of adhesives. Zeitschrift für Angewandte Mathematik und Mechanik: Appl. Math. Mech. 88(5), 388–402 (2008)

    Article  ADS  Google Scholar 

  11. Ferhoum, R., Aberkane, M., Ouali, M.O.: Distribution of nonliner relaxation (DNLR) approach of the annealing effects in semicristalline polymers: structure-property relation for high-density polyethylene (HDPE). Contin. Mech. Thermodyn. 26(3), 373–385 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  12. Jennrich, R., Lion, A., Johlitz, M., Ernst, S., Dilger, K., Stammen, E.: Thermomechanical characterization and modeling of fast-curing polyurethane adhesives. Contin. Mech. Thermodyn. 32(2), 421–432 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  13. Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. Polym. Phys. Ed. 17(7), 1097–1162 (1979)

    Article  ADS  Google Scholar 

  14. Tool, A.Q.: Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29(9), 240–253 (1946)

    Article  Google Scholar 

  15. Narayanaswamy, O.S.: A model of structural relaxation in glass. J. Am. Ceram. Soc. 54(10), 491–498 (1971)

    Article  Google Scholar 

  16. Moynihan, C.T., Easteal, A.J., DeBolt, M.A., Tucker, J.: Analysis of structural relaxation in glass using rate heating data. J. Am. Ceram. Soc. 59, 12–16 (1976)

    Article  Google Scholar 

  17. Fan, M., Zhang, K., Schroers, J., Shattuck, M.D., O’Hern, C.S.: Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses. Phys. Rev. E 96(3), 032602 (2017)

    Article  ADS  Google Scholar 

  18. Kohlrausch, R.: Theorie des elektrischen Rückstandes in der Leidener Flasche. Annalen der Physik 167(2), 179–214 (1854)

    Article  ADS  Google Scholar 

  19. Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    Article  Google Scholar 

  20. Moynihan, C.T., Easteal, A.J., Wilder, J., Tucker, J.: Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78(26), 2673–2677 (1974)

    Article  Google Scholar 

  21. Schmelzer, J.W.P., Tropin, T.V.: Dependence of the width of the glass transition interval on cooling and heating rates. J. Chem. Phys. 138(3), 034507 (2013)

    Article  ADS  Google Scholar 

  22. Gutzow, I., Ilieva, D., Babalievski, F., Yamakov, V.: Thermodynamics and kinetics of the glass transition: A generic geometric approach. J. Chem. Phys. 112(24), 10941–10948 (2000)

    Article  ADS  Google Scholar 

  23. Gutzow, I., Yamakov, V., Ilieva, D., Babalievski, Ph, Pye, L.D.: Generic phenomenological theory of vitrification. Glass Phys. Chem. 27(2), 148–159 (2001)

    Article  Google Scholar 

  24. Volkenshtein, M.V., Ptitsyn, O.B.: The relaxation theory of glass transition. Dokl. Phys. 103(5), 795–798 (1955)

    Google Scholar 

  25. Vol’kenshtein, M.V., Ptitsyn, O.B.: Relaxation theory of vitrification. Solution of basic equation and its studying. Russ. J. Appl. Phys. 26(10), 2204–2222 (1956)

    Google Scholar 

  26. Sanditov, D.S., Ojovan, M.I.: Relaxation aspects of the liquid-glass transition. Physics-Uspekhi 62(2), 111 (2019)

    Article  ADS  Google Scholar 

  27. Bragg, W.L., Williams, E.J.: The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. Ser. A 145(855), 699–730 (1934)

    Article  ADS  Google Scholar 

  28. Wunderlich, B., Bodily, D.M., Kaplan, M.H.: Theory and measurements of the glass-transformation interval of polystyrene. J. Appl. Phys. 35(1), 95–102 (1964)

    Article  ADS  Google Scholar 

  29. Fedoryuk, M.V.: Asymptotics: Integrals and Series (In Russian). Nauka, Moscow (1987)

    MATH  Google Scholar 

  30. Tropin, T.V., Schmelzer, J.W., Aksenov, V.L.: Modern aspects of the kinetic theory of glass transition. Physics-Uspekhi 59(1), 42 (2016)

    Article  ADS  Google Scholar 

  31. Sanditov, D.S., Ojovan, M.I.: On relaxation nature of glass transition in amorphous materials. Physica B: Condensed Matter 523, 96–113 (2017)

    Article  ADS  Google Scholar 

  32. Doyle, C.D.: Series approximations to the equation of thermogravimetric data. Nature 207(4994), 290 (1965)

    Article  ADS  Google Scholar 

  33. Flynn, J.H., Wall, L.A.: General treatment of the thermogravimetry of polymers. J. Res. Natl. Bureau Stand. 70(6), 487–523 (1966)

    Article  Google Scholar 

  34. Ozawa, T.: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. Calorim. 2(3), 301–324 (1970)

    Article  Google Scholar 

Download references

Acknowledgements

IA is grateful to the Biofilms center for the hospitality during his stay at the Malmö University, where this research was carried out.

The authors would like to express their gratitude to the Referee for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Argatov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argatov, I., Kocherbitov, V. Analysis of the minimal model for the enthalpy relaxation and recovery in glass transition: application to constant-rate differential scanning calorimetry. Continuum Mech. Thermodyn. 33, 107–123 (2021). https://doi.org/10.1007/s00161-020-00891-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00891-3

Keywords

Navigation