Skip to main content

Advertisement

Log in

Application of arbitrary polynomial chaos (aPC) expansion for global sensitivity analysis of mineral dissolution and precipitation modeling under geologic carbon storage conditions

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Numerical modeling of geochemistry associated with geologic CO2 storage involves many conceptual and quantitative uncertainties. In this study, a time efficient arbitrary polynomial chaos (aPC) expansion approach was proposed to do global sensitivity analysis of mineral dissolution and precipitation modeling in geologic carbon storage scenarios. To demonstrate the workflow of the aPC approach, a numerical model to predict permeability evolution of a Lower Tuscaloosa sandstone core exposed to CO2 saturated brine was used. The modeled sandstone core permeability by the aPC approach was 2095.5 mD ± 504.5 mD after 180 days of CO2 exposure. The measured permeability of the core after 180 days of CO2 exposure was 1925.0 mD, which was within the uncertainty range. Keq (SiO2 (am)) was the most important modeling parameter that influenced permeability results, implying that SiO2 (am) is a key mineral that governs permeability evolution of sandstone in geologic carbon storage scenarios. The aPC approach can reduce 99% of simulation time needed to do global sensitivity analysis of a complicated geochemical model, compared with traditional Monte Carlo approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, M.R., Frame, D.J., Huntingford, C., Jones, C.D., Lowe, J.A., Meinshausen, M., Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 458(7242), 1163–1166 (2009)

    Article  Google Scholar 

  2. Arrhenius, S.: XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 41(251), 237–276 (1896)

    Article  Google Scholar 

  3. GISTEMP Team. GISS surface temperature analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 2016-01-31 at http://data.giss.nasa.gov/gistemp/

  4. Hansen, J., Ruedy, R., Sato, M., Lo, K.: Global surface temperature change. Rev. Geophys. 48, RG4004 (2010). https://doi.org/10.1029/2010RG000345

    Article  Google Scholar 

  5. Lacis, A.A., Schmidt, G.A., Rind, D., Ruedy, R.A.: Atmospheric CO2: principal control knob governing Earth’s temperature. Science. 330(6002), 356–359 (2010)

    Article  Google Scholar 

  6. Metz, B., Davidson, O., De Coninck, H., Loos, M., Meyer, L.: IPCC special report on carbon dioxide capture and storage.Intergovernmental Panel on Climate Change. Working Group III, Geneva (2005)

    Google Scholar 

  7. Raupach, M.R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J.G., Klepper, G., Field, C.B.: Global and regional drivers of accelerating CO2 emissions. Proc. Nat. Acad. Sci. 104(24), 10288–10293 (2007)

    Article  Google Scholar 

  8. Solomon, S., Plattner, G.K., Knutti, R., Friedlingstein, P.: Irreversible climate change due to carbon dioxide emissions. Proc. Nat. Acad. Sci. 106(6), 1704–1709 (2009)

    Article  Google Scholar 

  9. Liu, H., Were, P., Li, Q., Gou, Y., Hou, Z.: Worldwide status of CCUS technologies and their development and challenges in China. Geofluids. 1–25 (2017)

  10. Carroll, S., Carey, J.W., Dzombak, D., Huerta, N.J., Li, L., Richard, T., Um, W., Walsh, S.D., Zhang, L.: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments. Int. J. Greenhouse Gas Control. 49, 149–160 (2016)

    Article  Google Scholar 

  11. Cheng, X.W., Mei, K.Y., Li, Z.Y., Zhang, X.G., Guo, X.Y.: Research on the interface structure during unidirectional corrosion for oil-well cement in H2S based on computed tomography technology. Ind. Eng. Chem. Res. 55(41), 10889–10895 (2016)

    Article  Google Scholar 

  12. Hosseini, S.A., Lashgari, H., Choi, J.W., Nicot, J.P., Lu, J., Hovorka, S.D.: Static and dynamic reservoir modeling for geological CO2 sequestration at Cranfield, Mississippi, USA. Int. J. Greenhouse Gas Control. 18, 449–462 (2013)

    Article  Google Scholar 

  13. Jun, Y.S., Giammar, D.E., Werth, C.J.: Impacts of geochemical reactions on geologic carbon sequestration. Environ. Sci. Technol. 47(1), 3–8 (2013)

    Article  Google Scholar 

  14. Namhata, A., Zhang, L., Dilmore, R.M., Oladyshkin, S., Nakles, D.V.: Modeling changes in pressure due to migration of fluids into the above zone monitoring interval of a geologic carbon storage site. Int. J. Greenhouse Gas Control. 2017(56), 30–42 (2017)

    Article  Google Scholar 

  15. Nordbotten, J.M., Celia, M.A., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media. 58(3), 339–360 (2005)

    Article  Google Scholar 

  16. Oldenburg, C.M., Pruess, K., Benson, S.M.: Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy Fuel. 15(2), 293–298 (2001)

    Article  Google Scholar 

  17. Trevisan, L., Pini, R., Cihan, A., Birkholzer, J.T., Zhou, Q.L., Gonzalez-Nicolas, A., Illangasekare, T.H.: Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments. Water Resour. Res. 53(1), 485–502 (2017)

    Article  Google Scholar 

  18. Xu, T., Apps, J.A., Pruess, K.: Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem. Geol. 217(3), 295–318 (2005)

    Article  Google Scholar 

  19. Yang, D.S., Wang, W., Chen, W.Z., Yang, J.P., Wang, S.G.: Investigation on stress sensitivity of permeability in a natural fractured shale. Environ. Earth Sci. 78, 1–10 (2019a). https://doi.org/10.1007/s12665-019-8045-2

    Article  Google Scholar 

  20. Yang, Y., Yang, H., Liu, T., Yao, J., Wang, W., Zhang, K., Luquot, L.: Microscopic determination of remaining oil distribution in sandstones with different permeability scales using computed tomography scanning. J. Energy Res. Technol. 141, 092903–092901 (2019b)

    Article  Google Scholar 

  21. Zhang, L., Dilmore, R.M., Bromhal, G.S.: Effect of outer boundary condition, reservoir size, and CO2 effective permeability on pressure and CO2 saturation predictions under carbon sequestration conditions. Greenhouse Gases Sci. Technol. 6(4), 546–560 (2016)

    Article  Google Scholar 

  22. Pruess, K., Garcia, J.: Multiphase flow dynamics during CO2 disposal into saline aquifers. Environmental Geology. 42(2-3), 282–295 (2002)

  23. Rutqvist, J., Tsang, C.F.: A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environmental Geology. 42(2-3), 296–305 (2002)

  24. Damen, K., Faaij, A., Turkenburg, W.: Health, safety and environmental risks of underground CO2 storage–overview of mechanisms and current knowledge. Climatic Change. 74(1-3), 289–318 (2006)

  25. Jones, D.J., Beaubien, S.E., Annunziatellis, A., Baubron, J.C., Braubant, G., Cardellini, C., Cinti, D., Scheib, C., Lombardi, S., Michel, K, Morgantini, N.: Surface gas measurements and related studies for the characterization and monitoring of geological CO2 storage sites; experiences at Weyburn and in Salah. In Proceedings of CO2CS International Symposium, Berkeley, California (USA), 20-22 Marzo 2006. 169–172 (2006)

  26. Voltattorni, N., Caramanna, G., Cinti, D., Galli, G., Pizzino, L. and Quattrocchi, F.: Study of natural CO2 emissions in different Italian geological scenarios. In Advances in the geological storage of carbon dioxide (pp. 175–190) (2006). Springer, Dordrecht. https://link.springer.com/chapter/10.1007/1-4020-4471-2_15

  27. Cantucci, B., Montegrossi, G., Vaselli, O., Tassi, F., Quattrocchi, F., Perkins, E.H.: Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study. Chem. Geol. 265(1–2), 181–197 (2009)

    Article  Google Scholar 

  28. Zhang, L., Dilmore, R., Namhata, A., Bromhal, G.: Feasibility of CO2 migration detection using pressure and CO2 saturation monitoring above an imperfect primary seal of a geologic CO2 storage formation: a numerical investigation. Comput. Geosci. 22(3), 909–923 (2018)

    Article  Google Scholar 

  29. Allen, D.E., Strazisar, B.R., Soong, Y., Hedges, S.W.: Modeling carbon dioxide sequestration in saline aquifer: significance of elevated pressures and salinities. Fuel Process. Technol. 86, 1569–1580 (2005)

    Article  Google Scholar 

  30. Luquot, L., Gouze, P.: Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chemical Geology. 265(1-2), 148–159 (2009)

  31. Farquhar, S.M., Dawson, G.K.W., Esterle, J.S., Golding, S.D.: Mineralogical characterisation of a potential reservoir system for CO2 sequestration in the Surat Basin. Australian Journal of Earth Sciences. 60(1), 91–110 (2013)

  32. Bacon, D.H., Dai, Z., Zheng, L.: Geochemical impacts of carbon dioxide, brine, trace metal and organic leakage into an unconfined, oxidizing limestone aquifer. Energy Procedia. 63, 4684–4707 (2014)

  33. Luhmann, A.J., Kong, X.Z., Tutolo, B.M., Garapati, N., Bagley, B.C., Saar, M.O., Seyfried Jr., W.E.: Experimental dissolution of dolomite by CO2-charged brine at 100 C and 150 bar: Evolution of porosity, permeability, and reactive surface area. Chemical Geology. 380, 145–160 (2014)

  34. Gislason, S., Broecker, W., Gunnlaugsson, E., Snaebjornsdottir, S., Mesfin, K., Alfredsson, H., Aradóttir, E., Sigfusson, B., Gunnarsson, I., Stute, M., Matter, J.: Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia. 63(63), 4561–4574 (2014)

  35. Yang, C., Hovorka, S.D., Treviño, R.H., Delgado-Alonso, J.: Integrated framework for assessing impacts of CO2 leakage on groundwater quality and monitoring-network efficiency: case study at a CO2 enhanced oil recovery site. Environmental Science & Technology, 49(14), 8887–8898 (2015a)

  36. Yang, C., Treviño, R.H., Hovorka, S.D., Delgado-Alonso, J. Semi-analytical approach to reactive transport of CO2 leakage into aquifers at carbon sequestration sites. Greenhouse Gases: Science and Technology, 5(6), 786–801 (2015b)

  37. Zhang, L., Soong, Y., Dilmore, R., Lopano, C.: Numerical simulation of porosity and permeability evolution of mount Simon sandstone under geological carbon sequestration conditions. Chem. Geol. 403, 1–12 (2015)

    Article  Google Scholar 

  38. Miller, Q.R., Wang, X., Kaszuba, J.P., Mouzakis, K.M., Navarre-Sitchler, A.K., Alvarado, V., McCray, J.E., Rother, G., Bañuelos, J.L., Heath, J.E.: Experimental study of porosity changes in shale caprocks exposed to carbon dioxide-saturated brine II: Insights from aqueous geochemistry. Environmental Engineering Science. 33(10), 736–744 (2016)

  39. Saltelli, A., Ratto, M., Andres, T.: Global Sensitivity Analysis: The Primer. Wiley (2008)

  40. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  Google Scholar 

  41. Ashraf, M., Oladyshkin, S., Nowak, W.: Geological storage of CO2: global sensitivity analysis and risk assessment using arbitrary polynomial chaos expansion. Int. J. Greenhouse Gas Control. 19, 704–719 (2013)

    Article  Google Scholar 

  42. Oladyshkin, S., de Barros, F.P.J., Nowak, W.: Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology. Adv. Water Resour. 37, 10–22 (2012)

    Article  Google Scholar 

  43. Devenish, B.J., Francis, P.N., Johnson, B.T., Sparks, R.S.J., Thomson, D.J.: Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajökull in may 2010. J. Geophys. Res. 117, 309–315 (2012)

    Article  Google Scholar 

  44. Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T.: Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 79, 214–232 (2016)

    Article  Google Scholar 

  45. Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical-species and kinetic precipitation dissolution reactions with application to reactive flow in single-phase hydrothermal systems. Am. J. Sci. 294(5), 529–592 (1994)

  46. Carroll, S.A., McNab, W.W., Dai, Z., Torres, S.C.: Reactivity of mount Simon sandstone and the Eau Claire shale under CO2 storage conditions. Environ. Sci. Technol. 47(1), 252–261 (2012)

    Article  Google Scholar 

  47. Wolery, T.J.: EQ3/6: Software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I, Livermore, California (1992)

  48. Marty, N.C., Tournassat, C., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. J. Hydrol. 364(1–2), 58–72 (2009)

    Article  Google Scholar 

  49. Wersin, P., Johnson, L.H., Schwyn, B.: Assessment of redox conditions in the near field of nuclear waste repositories: application to the Swiss high-level and intermediate level waste disposal concept. MRS Online Proc. Libr. Arch. 807, 539–544 (2003)

    Article  Google Scholar 

  50. Castendyk, D.N., Webster-Brown, J.G.: Sensitivity analyses in pit lake prediction, Martha mine, New Zealand 2: geochemistry, water–rock reactions, and surface adsorption. Chem. Geol. 244(1–2), 56–73 (2007)

    Article  Google Scholar 

  51. De Windt, L., Chaurand, P., Rose, J.: Kinetics of steel slag leaching: batch tests and modeling. Waste Manage. 31(2), 225–235 (2011)

    Article  Google Scholar 

  52. Ciffroy, P., Benedetti, M.: A comprehensive probabilistic approach for integrating natural variability and parametric uncertainty in the prediction of trace metals speciation in surface waters. Environ. Pollut. 242, 1087–1097 (2018)

    Article  Google Scholar 

  53. Ceriotti, G., Guadagnini, L., Porta, G., Guadagnini, A.: Local and global sensitivity analysis of Cr (VI) Geogenic leakage under uncertain environmental conditions. Water Resour. Res. 54(8), 5785–5802 (2018)

    Article  Google Scholar 

  54. Eldred, E.S.; Burkardt, J.: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 2009, January 5–8, AIAA paper 2009–0976

  55. Li, H., Zhang, D.: Probabilistic collocation method for flow in porous media: comparisons with other stochastic methods. Water Resour. Res. 43, 44–56 (2007)

    Google Scholar 

  56. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    Article  Google Scholar 

  57. Zhang, Y., Sahinidis, N.V.: Uncertainty Quantification in CO2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion. Ind. Eng. Chem. Res. 52(9), (2013)

  58. Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: A concept for data driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv. Water Resour. 34, 1508–1518 (2011a)

    Article  Google Scholar 

  59. Oladyshkin, S., Nowak, W.: Date-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 106, 179–190 (2012)

    Article  Google Scholar 

  60. Wiener, N.: The homogeneous chaos. Am. J. Math. 1938(60), 897–936 (1938)

    Article  Google Scholar 

  61. Namhata, A., Oladyshkin, S., Dilmore, R.M., Zhang, L., Nakles, D.V.: Probabilistic assessment of above zone pressure predictions at a geologic carbon storage site. Sci. Rep. 6, 39536 (2016)

    Article  Google Scholar 

  62. Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: An integrative approach to robust design and probabilistic risk assessment for storage in geological formations. Comput. Geosci. 15, 565–577 (2011b)

    Article  Google Scholar 

  63. Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: Highly Efficient Tool for Probabilistic Risk Assessment of Ccs Joint with Injection Design, Computational Methods in Water Resources (CMWR). XVIII International Conference on Water Resources, Barcelona (2010)

    Google Scholar 

  64. Crestaux, T., Le Maitre, O., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety. 94(7), 1161–1172 (2009)

  65. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety. 93(7), 964–979 (2008)

  66. Sobol, I.M.: On sensitivity estimation for nonlinear mathematical models. Math. Model. 2(1), 112–118 (1990)

    Google Scholar 

  67. Maltz, F.H., Hitzl, D.L.: Variance reduction in Monte Carlo computations using multi-dimensional hermite polynomials. J. Comput. Phys. 2, 345–376 (1979)

    Article  Google Scholar 

  68. Robert, C.P., Casella, G.: Monte Carlo Methods. Springer, New York (2004)

    Book  Google Scholar 

  69. Oladyshkin, S., Schröder, P., Class, H., Nowak, W.: Chaos expansion based bootstrap filter to calibrate CO2 injection models. Energy Procedia. 40, 398–407 (2013)

    Article  Google Scholar 

  70. Zhang, L., Soong, Y., Dilmore, R.M.: Numerical investigation of lower Tuscaloosa sandstone and Selma chalk caprock under geological CO2 sequestration conditions: mineral precipitation and permeability evolution. Greenhouse Gases Sci. Technol. 7(6), 988–1007 (2017)

    Article  Google Scholar 

  71. Singh, H., Srinivasan, S.: Scale up of reactive processes in heterogeneous media-numerical experiments and semi-analytical modeling. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2014)

  72. Carroll, S.A., McNab, W.W., Dai, Z., Torres, S.C.: Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions. Environmental Science & Technology. 47(1), 252–261 (2013)

  73. Steefel, C.I.: CrunchFlow User’s Manual. Lawrence Berkeley National Laboratory, Berkeley (2009)

    Google Scholar 

  74. Li, L., Steefel, C.I., Kowalsky, M.B., Englert, A., Hubbard, S.S.: Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during a biostimulation experiment at rifle, Colorado. J. Contam. Hydrol. 112, 45–63 (2010)

    Article  Google Scholar 

  75. Li, L., Gawande, N., Kowalsky, M.B., Steefel, C.I., Hubbard, S.S.: Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale. Environ. Sci. Technol. 45, 9959–9966 (2011)

    Article  Google Scholar 

  76. Beckingham, L., Qin, F.: Impact of image resolution on quantification of mineral properties and simulated mineral reactions and reaction rates. Presented at InterPore 11th Annual Meeting, Valencia, Spain, 6–10 May, 2019

  77. Kampman, N., Bickle, M., Wigley, M., Dubacq, B.: Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins. Chem. Geol. 369, 22–50 (2014)

    Article  Google Scholar 

  78. De Silva, G.P.D., Ranjith, P.G., Perera, M.S.A.: Geochemical aspects of CO2 sequestration in deep saline aquifers: a review. Fuel. 155, 128–143 (2015)

    Article  Google Scholar 

  79. Ciriello, V., Lauriola, I., Tartakovsky, D.M.: Distribution-based global sensitivity analysis in hydrology. Water Resour. Res. 55(11), 8708–8720 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Thousand Talent Program for Outstanding Young Scientists (Y731101B01), the National Natural Science Foundation of China projects (41902258 and U1967208), and CAS-ITRI collaborative research funding (CAS-ITRI2019011). The authors would like to acknowledge Dr. Sergey Oladyshkin at the University of Stuttgart for allowing us to use the aPC analysis code, and Dr. Zan Wang at the NETL for her advice in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Namhata, A., Dilmore, R. et al. Application of arbitrary polynomial chaos (aPC) expansion for global sensitivity analysis of mineral dissolution and precipitation modeling under geologic carbon storage conditions. Comput Geosci 24, 1333–1346 (2020). https://doi.org/10.1007/s10596-020-09953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09953-6

Keywords

Navigation