Skip to main content

Advertisement

Log in

Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, we designed and synthesized a novel naphthalenediimide-based n-type conjugated polymer PNDICI, which bears asymmetric backbone containing a 3-chlorothiophene unit. The asymmetric structure associated with steric effects of the chlorine atom imparts remarkable solubility to PNDICI in various organic solvents, enabling the fabrication of all-polymer solar cells (all-PSCs) by using an environmentally friendly solvent of d-limonene. Combined with a novel pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione based p-type conjugated polymer P2F-Si with deep highest occupied molecular orbital energy level, the resulting d-limonene-processed all-PSCs presents an impressively high open-circuit voltage of approaching 1.0 V, corresponding to a very small energy loss of 0.49 eV. Through further morphology optimization by using γ-valerolactone, we demonstrated an impressive device efficiency of 4.2%, which is among the best photovoltaic performance of devices processed using d-limonene and comparable to that processed by conventional solvent, suggesting the great promise of using greener solvent for fabricating high-performance all-PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J., Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev., 2019, 119, 8028–8086.

    CAS  PubMed  Google Scholar 

  2. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X., Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater., 2018, 3, 18003.

    CAS  Google Scholar 

  3. Li, Z.; Zhong, W.; Ying, L.; Liu, F., Li, N.; Huang, F.; Cao, Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy, 2019, 44, 103931.

    Google Scholar 

  4. Li, Z.; Zhong, W.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y., Achieving efficient thick film all-polymer solar cells using a green solvent additive. Chinese J. Polym. Sci., 2020, 38, 323–331.

    CAS  Google Scholar 

  5. Zhao, R.; Dou, C.; Liu, J.; Wang, L., An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics. Chinese J. Polym. Sci., 2017, 35, 198–206.

    CAS  Google Scholar 

  6. Huo, Y.; Zhang, H. L.; Zhan, X., Nonfullerene all-small-molecule organic solar cells. ACS Energy Lett., 2019, 4, 1241–1250.

    CAS  Google Scholar 

  7. Huang, F.; Bo, Z.; Geng Y.; Wang, X.; Wang, L.; Ma, Y.; Hou, J.; Hu, W.; Pei, J.; Dong, H.; Wang, S.; Li, Z.; Shuai, Z.; Li, Y.; Cao, Y. Study on optoelectronic polymers: an overview and outlook. Acta Polymerica Sinica (in Chinese) 2019, 50, 988–1046.

    Google Scholar 

  8. Zhong, W.; Xie, R.; Ying, L.; Huang, F.; Cao, Y. High performance polymer photodetectors enabled by a naphtho[1,2-c:5,6-c’]bis([1,2,5] thiadiazole) based π-conjugated polymer. Acta Polymerica Sinica (in Chinese) 2018, 217–222.

  9. Dang, D.; Chen, W.; Himmelberger, S.; Tao, Q.; Lundin, A.; Yang, R.; Zhu, W.; Salleo, A.; Müller, C.; Wang, E., Enhanced photovoltaic performance of indacenodithiophene-quinoxaline copolymers by side-chain modulation. Adv. Energy Mater., 2014, 4, 1400680.

    Google Scholar 

  10. Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y., Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem., 2019, 62, 746–752.

    CAS  Google Scholar 

  11. An, Q.; Ma, X.; Gao, J.; Zhang, F., Solvent additive-free ternary polymer solar cells with 16.27% efficiency. Sci. Bull., 2019, 64, 504.

    CAS  Google Scholar 

  12. Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z., 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater., 2019, 31, 1902210.

    Google Scholar 

  13. Li, K.; Wu, Y.; Tang, Y.; Pan, M. A.; Ma, W.; Fu, H.; Zhan, C.; Yao, J., Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-LUMO-level acceptor to improve film morphology. Adv. Energy Mater., 2019, 9, 1901728.

    Google Scholar 

  14. Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun., 2019, 10, 2515.

    PubMed  PubMed Central  Google Scholar 

  15. Xue, R.; Zhang, J.; Li, Y.; Li, Y., Organic solar cell materials toward commercialization. Small, 2018, 14, 1801793.

    Google Scholar 

  16. Zhang, K.; Gao, K.; Xia, R.; Wu, Z.; Sun, C.; Cao, J.; Qian, L.; Li, W.; Liu, S.; Huang, F.; Peng, X.; Ding, L.; Yip, H. L.; Cao, Y., Highperformance polymer tandem solar cells employing a new n-type conjugated polymer as an interconnecting layer. Adv. Mater., 2016, 28, 4817–4823.

    CAS  PubMed  Google Scholar 

  17. Zhang, M.; Ming, R.; Gao, W.; An, Q.; Ma, X.; Hu, Z.; Yang, C.; Zhang, F., Ternary polymer solar cells with alloyed non-fullerene acceptor exhibiting 12.99% efficiency and 76.03% fill factor. Nano Energy, 2019, 59, 58–65.

    CAS  Google Scholar 

  18. Yuan, J.; Qiu, L.; Zhang, Z. G.; Li, Y.; Chen, Y.; Zou, Y., Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%. Nano Energy, 2016, 30, 312–320.

    CAS  Google Scholar 

  19. Meng, B.; Miao, J.; Liu, J.; Wang, L., A new polymer electron acceptor based on thiophene-S,S-dioxide unit for organic photovoltaics. Macromol. Rapid Commun., 2018, 39, 1700505.

    Google Scholar 

  20. Chen, D.; Yao, J.; Chen, L.; Yin, J.; Lv, R.; Huang, B.; Liu, S.; Zhang, Z. G.; Yang, C.; Chen, Y.; Li, Y., Dye-incorporated polynaphthalenediimide acceptor for additive-free highperformance all-polymer solar cells. Angew. Chem. Int. Ed., 2018, 57, 4580–4584.

    CAS  Google Scholar 

  21. Wang, M.; Xue, Z.; Wang, Z.; Ning, W.; Zhong, Y.; Liu, Y.; Zhang, C.; Huettner, S.; Tao, Y., Slight structural disorder in bithiophenebased random terpolymers with improved power conversion efficiency for polymer solar cells. Chinese J. Polym. Sci., 2018, 36, 1129–1138.

    CAS  Google Scholar 

  22. Zhang, L.; Xu, H.; Ding, Z.; Hu, J.; Liu, J.; Liu, Y., Amino N-oxide functionalized graphene quantum dots as a cathode interlayer for inverted polymer solar cells. J. Mater. Chem. C, 2018, 6, 5684–5689.

    CAS  Google Scholar 

  23. Liu, J.; Wang, L. Polymer electron acceptors containing boronnitrogen coordination bond (B←N) for all-polymer solar cells. Acta Polymerica Sinica (in Chinese) 2017, 1856–1869.

  24. Zhao, R.; Dou, C.; Xie, Z.; Liu, J.; Wang, L., Polymer acceptor based on B←N units with enhanced electron mobility for efficient allpolymer solar cells. Angew. Chem. Int. Ed., 2016, 55, 5313–5317.

    CAS  Google Scholar 

  25. Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H.; Li, Ning; Ma, Y.; Brabec, C.; Huang, F.; Cao, Y., Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun., 2019, 10, 1.

    Google Scholar 

  26. Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y., Allpolymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater., 2016, 28, 1884–1890.

    CAS  PubMed  Google Scholar 

  27. Kolhe, N. B.; Tran, D. K.; Lee, H.; Kuzuhara, D.; Yoshimoto, N.; Koganezawa, T.; Jenekhe, S. A., New random copolymer acceptors enable additive-free processing of 10.1% efficient all-polymer solar cells with near-unity internal quantum efficiency. ACS Energy Lett., 2019, 4, 1162–1170.

    CAS  Google Scholar 

  28. Sun, H.; Tang, Y.; Koh, C. W.; Ling, S.; Wang, R.; Yang, K.; Yu, J.; Shi, Y.; Wang, Y.; Woo, H. Y.; Guo, X., High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene. Adv. Mater., 2019, 31, 1807220.

    Google Scholar 

  29. Xu, X.; Li, Z.; Zhang, W.; Meng, X.; Zou, X.; Di Carlo Rasi, D.; Ma, W.; Yartsev, A.; Andersson, M. R.; Janssen, R. A. J.; Wang, E., 8.0% Efficient all-polymer solar cells with high photovoltage of 1.1 V and internal quantum efficiency near unity. Adv. Energy Mater., 2018, 8, 1700908.

    Google Scholar 

  30. Zhang, Z.; Miao, J.; Ding, Z.; Kan, B.; Lin, B.; Wan, X.; Ma, W.; Chen, Y.; Long, X.; Dou, C.; Zhang, J.; Liu, J.; Wang, L., Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun., 2019, 10, 3271.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. He, Y.; Heumüller, T.; Lai, W.; Feng, G.; Classen, A.; Du, X.; Liu, C.; Li, W.; Li, N.; Brabec, C. J., Evidencing excellent thermal- and photostability for single-component organic solar cells with inherently built-In microstructure. Adv. Energy Mater., 2019, 9, 1900409.

    Google Scholar 

  32. Shi, Y.; Wang, Y.; Guo, X. Recent progress of imide-functionalized n-type polymer semiconductors. Acta Polymerica Sinica (in Chinese) 2019, 50, 873–889.

    Google Scholar 

  33. Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; Janssen, R. A. J.; Li, W., Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a nonchlorinated solvent. Adv. Mater., 2016, 28, 943–950.

    CAS  PubMed  Google Scholar 

  34. Fan, B.; Ying, L.; Wang, Z.; He, B.; Jiang, X. F.; Huang, F.; Cao, Y., Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy Environ. Sci., 2017, 10, 1243–1251.

    CAS  Google Scholar 

  35. Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y., A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci., 2019, 12, 157–163.

    CAS  Google Scholar 

  36. Chen, X.; Liu, X.; Burgers, M. A.; Huang, Y.; Bazan, G. C., Green-solvent-processed molecular solar cells. Angew. Chem. Int. Ed., 2014, 53, 14378–14381.

    CAS  Google Scholar 

  37. Xie, C.; Heumüller, T.; Gruber, W.; Tang, X.; Classen, A.; Schuldes, I.; Bidwell, M.; Späth, A.; Fink, R. H.; Unruh, T.; McCulloch, I.; Li, N.; Brabec, C. J., Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun., 2018, 9, 5335.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Farahat, M. E.; Perumal, P.; Budiawan, W.; Chen, Y. F.; Lee, C. H.; Chu, C. W., Efficient molecular solar cells processed from green solvent mixtures. J. Mater. Chem. A, 2017, 5, 571.

    CAS  Google Scholar 

  39. Meng, B.; Song, H.; Chen, X.; Xie, Z.; Liu, J.; Wang, L., Replacing alkyl with oligo(ethylene glycol) as side chains of conjugated polymers for close π-π stacking. Macromolecules, 2015, 48, 4357.

    CAS  Google Scholar 

  40. Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y., All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater., 2017, 29, 1703906.

    Google Scholar 

  41. Kim, N. K.; Jang, S. Y.; Pace, G.; Caironi, M.; Park, W. T.; Khim, D.; Kim, J.; Kim, D. Y.; Noh, Y. Y., High-performance organic field-effect transistors with directionally aligned conjugated polymer film deposited from pre-aggregated solution. Chem. Mater., 2015, 27, 8345–8353.

    CAS  Google Scholar 

  42. Zhu, Y.; Chen, Z.; Yang, Y.; Cai, P.; Chen, J.; Li, Y.; Yang, W.; Peng, J.; Cao, Y., Using d-limonene as the non-aromatic and non-chlorinated solvent for the fabrications of high performance polymer light-emitting diodes and field-effect transistors. Org. Electron., 2015, 23, 193–198.

    CAS  Google Scholar 

  43. Chen, H.; Hu, Z.; Wang, H.; Liu, L.; Chao, P.; Qu, J.; Chen, W.; Liu, A.; He, F., A chlorinated π-conjugated polymer donor for efficient organic solar cells. Joule, 2018, 2, 1623–1634.

    CAS  Google Scholar 

  44. Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y., High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater., 2018, 8, 1703085.

    Google Scholar 

  45. Zhong, W.; Hu, Q.; Jiang, Y.; Li, Y.; Chen, T. L.; Ying, L.; Liu, F.; Wang, C.; Liu, Y.; Huang, F.; Cao, Y.; Russell, T. P., In situ structure characterization in slot-die-printed all-polymer solar cells with efficiency over 9%. Solar RRL, 2019, 3, 1900032.

    Google Scholar 

  46. Gao, K.; Deng, W.; Xiao, L.; Hu, Q.; Kan, Y.; Chen, X.; Wang, C.; Huang, F.; Peng, J.; Wu, H.; Peng, X.; Cao, Y.; Russell, T. P.; Liu, F., New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. Nano Energy, 2016, 30, 639–648.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21822505 and 21905103), Dongguan Science and Technology Bureau (Nos. 2018607201002 and 2019622163009), and the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ying.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MJ., Fan, BB., Zhong, WK. et al. Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss. Chin J Polym Sci 38, 791–796 (2020). https://doi.org/10.1007/s10118-020-2429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2429-3

Keywords

Navigation