Skip to main content
Log in

A modified CTAB and Trizol® protocol for high-quality RNA extraction from whole wheat seedlings, including rhizosphere

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

The RNA extraction was performed from foliar (F) and whole wheat plants (including rhizosphere) (WP) samples by (1) the standard TRIzol® protocol, and (2) a modified CTAB and TRIzol® protocol. The modified CTAB and TRIzol® protocol was able to extract high-quality RNA (205.96 ± 18.7 ng/µL for F, and 231.76 ± 66.8 ng/µL for WP; RIN > 8.0), compared to the standard TRIzol® protocol (92.73 ± 24.2 ng/µL for F, and WP completely degraded, RIN < 8.0). Real-time RT-PCR assay was carried out for 6-SFT1 (target) and 18S rRNA (housekeeping) genes, which showed a PCR efficiency of 111% and 118%, respectively, and a no significant relative expression (3773 ± 1383.8 for F and 2847 ± 1037.5 for WP) was observed from RNA extracted by the modified protocol. The modified CTAB and TRIzol® protocol was able to produce high-quality RNA (yield, purity, and integrity) from foliar and whole wheat plants (including rhizosphere with recalcitrant properties).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aali KA, Parsinejad M, Rahmani B (2009) Estimation of saturation percentage of soil using multiple regression, ANN, and ANFIS techniques. Comput Inf Sci 2(3):127–136

    Article  Google Scholar 

  • Alm EW, Zheng D, Raskin L (2000) The presence of humic substances and DNA in RNA extracts affects hybridization results. Appl Environ Microbiol 66(10):4547–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes S, Fan A, Trueb J, Jareczek F, Mazzochette M, Sharon A, Sauer-Budge AF, Klapperich CM (2013) A portable, pressure driven, room temperature nucleic acid extraction and storage system for point of care molecular diagnostics. Anal Methods 5(13):3177–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1(2):581–585

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Renevey N, Thür B, Hoffmann D, Beer M, Hoffmann B (2016) Efficacy assessment of nucleic acid decontamination reagents used in molecular diagnostic laboratories. PLoS ONE 11(7):1–9

    CAS  Google Scholar 

  • Franchi M, Ferris JP, Gallori E (2003) Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Orig Life Evol Biosph 33(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19(6):520–525

    Article  CAS  PubMed  Google Scholar 

  • Jordon-Thaden IE, Chanderbali AS, Gitzendanner MA, Soltis DE (2015) Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta. Appl in Plant Sci. https://doi.org/10.3732/apps.1400105

    Article  Google Scholar 

  • Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:1–23

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Matlock B (2015) Assessment of nucleic acid purity—NanoDrop spectrophotometers. In: ThermoFisher Scientific. https://www.thermoscientific.com. Accessed 19 Dec 2019

  • Mueller O, Lightfoot S, Schröder A (2004) RNA Integrity Number (RIN) Standardization of RNA Quality Control. Tech Rep 5989-1165EN, Agilent Technologies, Application Note. http://www.agilent.com/chem/labonachip

  • Nielsen H (ed) (2011) Working with RNA. In: RNA. Methods in Molecular Biology (Methods and Protocols), vol 703. Humana Press, Totowa. https://doi.org/10.1007/978-1-59745-248-9_2

    Chapter  Google Scholar 

  • Novinscak A, Filion M (2011) Effect of soil clay content on RNA isolation and on detection and quantification of bacterial gene transcripts in soil by quantitative reverse Transcription-PCR. Appl Environ Microbiol 77(17):6249–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedreira-Segade U, Hao J, Razafitianamaharavo A, Pelletier M, Marry V, Le Crom S, Michot L, Daniel I (2018) How do nucleotides adsorb onto clays? Life 8(4):59

    Article  CAS  PubMed Central  Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:1–14

    Article  Google Scholar 

  • Valenzuela-Aragon B, Parra-Cota FI, Santoyo G, Arellano-Wattenbarger GL, de los Santos-Villalobos S (2019) Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant Soil 435(1):367–384. https://doi.org/10.1007/s11104-018-03901-1

    Article  CAS  Google Scholar 

  • Verhulst N, Deckers J, Govaerts B (2009) Classification of the soil at CIMMYT ’ s experimental station in the Yaqui Valley near Ciudad Obregón, Sonora, México. In CIMMYT Report. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/562/94513.pdf. Accessed 1 Jan 2020

  • Villa-Rodríguez E, Ibarra-Gámez C, de los Santos-Villalobos S (2018) Extraction of high-quality RNA from Bacillus subtilis with a lysozyme pre-treatment followed by the Trizol method. J Microbiol Methods. https://doi.org/10.1016/j.mimet.2018.02.011

    Article  PubMed  Google Scholar 

  • Wang Y, Fujii T (2011) Evaluation of methods of determining humic acids in nucleic acid samples for molecular biological analysis. Biosci Biotechnol Biochem 75(2):355–357

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hayatsu M, Fujii T (2012) Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 27(2):111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22(3):474–481

    Article  CAS  PubMed  Google Scholar 

  • Wong LM, Silvaraj S, Phoon LQ (2015) An optimised high-salt CTAB protocol for both DNA and RNA isolation from succulent stems of Hylocereus sp. J Med Bioeng 3(4):236–240

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421

    Article  Google Scholar 

  • Zipper H (2003) Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments. Nucl Acids Res 31(7):39e–39

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the CONACyT Project 257246 “Interacción trigo x microorganismos promotores del crecimiento vegetal: identificando genes con potencial agro-biotecnológico”, and the Instituto Tecnológico de Sonora (ITSON) Project PROFAPI 2020_0013 “Bacillus sp. TSO9: afiliación taxonómica a nivel del genoma e identificación de genes asociados a la promoción del crecimiento en el trigo”. Luis Abraham Chaparro-Encinas and Guillermo Luis Arellano-Wattenbarger were supported by CONACYT fellowships 292582 and 626633, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. de los Santos-Villalobos.

Additional information

Communicated by K. Posta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaparro-Encinas, L.A., Arellano-Wattenbarger, G.L., Parra-Cota, F.I. et al. A modified CTAB and Trizol® protocol for high-quality RNA extraction from whole wheat seedlings, including rhizosphere. CEREAL RESEARCH COMMUNICATIONS 48, 275–282 (2020). https://doi.org/10.1007/s42976-020-00046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-020-00046-9

Keywords

Navigation