Skip to main content

Advertisement

Log in

Metabolomics profiling of visceral and abdominal subcutaneous adipose tissue in colorectal cancer patients: results from the ColoCare study

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Underlying mechanisms of the relationship between body fatness and colorectal cancer remain unclear. This study investigated associations of circulating metabolites with visceral (VFA), abdominal subcutaneous (SFA), and total fat area (TFA) in colorectal cancer patients.

Methods

Pre-surgery plasma samples from 212 patients (stage I–IV) from the ColoCare Study were used to perform targeted metabolomics. VFA, SFA, and TFA were quantified by computed tomography scans. Partial correlation and linear regression analyses of VFA, SFA, and TFA with metabolites were computed and corrected for multiple testing. Cox proportional hazards were used to assess 2-year survival.

Results

In patients with metastatic tumors, SFA and TFA were statistically significantly inversely associated with 16 glycerophospholipids (SFA: pFDR range 0.017–0.049; TFA: pFDR range 0.029–0.048), while VFA was not. Doubling of ten of the aforementioned glycerophospholipids was associated with increased risk of death in patients with metastatic tumors, but not in patients with non-metastatic tumors (phet range: 0.00044–0.049). Doubling of PC ae C34:0 was associated with ninefold increased risk of death in metastatic tumors (Hazard Ratio [HR], 9.05; 95% confidence interval [CI] 2.17–37.80); an inverse association was observed in non-metastatic tumors (HR 0.17; 95% CI 0.04–0.87; phet = 0.00044).

Conclusion

These data provide initial evidence that glycerophospholipids in metastatic colorectal cancer are uniquely associated with subcutaneous adiposity, and may impact overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

Body Mass Index

CALS:

Concentration levels of standard mixes for amino acids and biogenic amines calibration

CI:

Confidence interval

CRC:

Colorectal cancer

CT:

Computed tomography

CV:

Coefficient of variation

DXA:

Dual-energy x-ray absorptiometry

FDR:

False discovery rate

FIA:

Flow injection analysis

HR:

Hazard ratio

HU:

Hounsfield units

IARC:

International Agency for Research on Cancer

LC:

Liquid chromatography

LLOQ:

Lower limit of quantification

LOD:

Limit of detection

MS:

Mass spectrometry

NSAID:

Non-steroidal anti-inflammatory drugs

OS:

Overall survival

PBS:

Phosphate buffer saline

QC:

Quality control

SAT:

Subcutaneous adipose tissue

SFA:

Subcutaneous fat area

SATI:

Subcutaneous adiposity index

TAT:

Total adipose tissue

TFA:

Total fat area

UHPLC:

Ultrahigh-performance liquid chromatography

ULOQ:

Upper limit of quantification

VAT:

Visceral adipose tissue

VEGF:

Vascular endothelial growth factor VFA: Visceral fat area

References

  1. Murphy N, Jenab M, Gunter MJ (2018) Adiposity and gastrointestinal cancers: epidemiology, mechanisms and future directions. Nat Rev Gastroenterol Hepatol 15:659–670

    Article  CAS  PubMed  Google Scholar 

  2. Moghaddam AA, Woodward M, Huxley R (2007) Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomark Prev 16:2533–2547

    Article  Google Scholar 

  3. Dong Y, Zhou J, Zhu Y et al (2017) Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep 37:2. https://doi.org/10.1042/BSR20170945

    Article  CAS  Google Scholar 

  4. Caan BJ, Meyerhardt JA, Kroenke CH et al (2017) Explaining the obesity paradox: the association between body composition and colorectal cancer survival (C-SCANS study). Cancer Epidemiol Biomark Prev 26:1008–1015

    Article  Google Scholar 

  5. Hopkins JJ, Reif RL, Bigam DL, Baracos VE, Eurich DT, Sawyer MB (2019) The impact of muscle and adipose tissue on long-term survival in patients with stage I to III colorectal cancer. Dis Colon Rectum 62:549–560

    Article  PubMed  Google Scholar 

  6. Charette N, Vandeputte C, Ameye L et al (2019) Prognostic value of adipose tissue and muscle mass in advanced colorectal cancer: a post hoc analysis of two non-randomized phase II trials. BMC Cancer 19:134

    Article  PubMed  PubMed Central  Google Scholar 

  7. Renehan AG, Sperrin M (2016) The obesity paradox and mortality after colorectal cancer: a causal conundrum. JAMA Oncol 2:1127–1129

    Article  PubMed  Google Scholar 

  8. Kroenke CH, Neugebauer R, Meyerhardt J et al (2016) Analysis of body mass index and mortality in patients with colorectal cancer using causal diagrams. JAMA Oncol 2:1137–1145

    Article  PubMed  PubMed Central  Google Scholar 

  9. Caan B, Sternfeld B, Gunderson E, Coates A, Quesenberry C, Slattery ML (2005) Life after cancer epidemiology (LACE) study: a cohort of early stage breast cancer survivors (United States). Cancer Causes Control 16:545–556

    Article  PubMed  Google Scholar 

  10. Renehan AG, Zwahlen M, Egger M (2015) Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer 15:484–498

    Article  CAS  PubMed  Google Scholar 

  11. Lennon H, Sperrin M, Badrick E, Renehan AG (2016) The obesity paradox in cancer: a review. Curr Oncol Rep 18:56

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE (2014) Obesity and cancer–mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 10:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greenlee H, Shi Z, Sardo Molmenti CL, Rundle A, Tsai WY (2016) Trends in obesity prevalence in adults with a history of cancer: results from the US National Health Interview Survey, 1997 to 2014. J Clin Oncol 34:3133–3140

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brown JC, Caan BJ, Prado CM et al (2020) The association of abdominal adiposity with mortality in patients with stage I-III colorectal cancer. J Natl Cancer Inst 112:377–383

    Article  PubMed  Google Scholar 

  15. Vaitkus JA, Celi FS (2017) The role of adipose tissue in cancer-associated cachexia. Exp Biol Med (Maywood) 242:473–481

    Article  CAS  Google Scholar 

  16. Ulrich CM, Himbert C, Holowatyj AN, Hursting SD (2018) Energy balance and gastrointestinal cancer: risk, interventions, outcomes and mechanisms. Nat Rev Gastroenterol Hepatol 15:683–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM (2017) Signals from the adipose microenvironment and the obesity-cancer link-a systematic review. Cancer Prev Res 10:494–506

    Article  CAS  Google Scholar 

  18. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 4:356–365

    Article  CAS  Google Scholar 

  19. Liesenfeld DB, Grapov D, Fahrmann JF et al (2015) Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study. Am J Clin Nutr 102:433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neamat-Allah J, Johnson T, Nabers D et al (2015) Can the use of blood-based biomarkers in addition to anthropometric indices substantially improve the prediction of visceral fat volume as measured by magnetic resonance imaging? Eur J Nutr 54:701–708

    Article  CAS  PubMed  Google Scholar 

  21. Boulet MM, Chevrier G, Grenier-Larouche T et al (2015) Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am J Physiol Endocrinol Metab 309:E736–E746

    Article  CAS  PubMed  Google Scholar 

  22. Szymanska E, Bouwman J, Strassburg K et al (2012) Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics. Omics 16:652–667

    Article  CAS  PubMed  Google Scholar 

  23. Ozoya OO, Siegel EM, Srikumar T, Bloomer AM, DeRenzis A, Shibata D (2017) Quantitative assessment of visceral obesity and postoperative colon cancer outcomes. J Gastrointest Surg 21:534–542

    Article  PubMed  PubMed Central  Google Scholar 

  24. Clark W, Siegel EM, Chen YA et al (2013) Quantitative measures of visceral adiposity and body mass index in predicting rectal cancer outcomes after neoadjuvant chemoradiation. J Am Coll Surg 216:1070–1081

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee JJ, Britton KA, Pedley A et al (2016) Adipose tissue depots and their cross-sectional associations with circulating biomarkers of metabolic regulation. J Am Heart Assoc 5:e002936

    PubMed  PubMed Central  Google Scholar 

  26. Otto L, Budde K, Kastenmuller G et al (2020) Associations between adipose tissue volume and small molecules in plasma and urine among asymptomatic subjects from the general population. Sci Rep 10:1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi T, Kawai H, Nakano O et al (2018) Prognostic value of subcutaneous adipose tissue volume in hepatocellular carcinoma treated with transcatheter intra-arterial therapy. Cancer Manag Res 10:2231–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chuang WC, Tsang NM, Chuang CC et al (2020) Association of subcutaneous and visceral adipose tissue with overall survival in Taiwanese patients with bone metastases—results from a retrospective analysis of consecutively collected data. PLoS ONE 15:e0228360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ebadi M, Martin L, Ghosh S et al (2017) Subcutaneous adiposity is an independent predictor of mortality in cancer patients. Br J Cancer 117:148–155

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bradshaw PT, Cespedes Feliciano EM, Prado CM et al (2019) Adipose tissue distribution and survival among women with nonmetastatic breast cancer. Obesity (Silver Spring) 27:997–1004

    Article  CAS  Google Scholar 

  31. Chung E, Lee HS, Cho ES et al (2019) Changes in body composition during adjuvant FOLFOX chemotherapy and overall survival in non-metastatic colon cancer. Cancers 12:e60

    Article  PubMed  CAS  Google Scholar 

  32. Gigic B, Boeing H, Toth R et al (2018) Associations between dietary patterns and longitudinal quality of life changes in colorectal cancer patients: the ColoCare study. Nutr Cancer 70:51–60

    Article  PubMed  Google Scholar 

  33. Liesenfeld D, Habermann N, Toth R et al (2015) Changes in urinary metabolic profiles of colorectal cancer patients enrolled in a prospective cohort study (ColoCare). Metabolomics 11:998–1012

    Article  CAS  PubMed  Google Scholar 

  34. Skender S, Bohm J, Schrotz-King P et al (2017) Plasma 25-hydroxyvitamin D3 levels in colorectal cancer patients and associations with physical activity. Nutr Cancer 69:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nattenmueller J, Hoegenauer H, Boehm J et al (2016) CT-based compartmental quantification of adipose tissue versus body metrics in colorectal cancer patients. Eur Radiol 26:4131–4140

    Article  PubMed  PubMed Central  Google Scholar 

  36. Irlbeck T, Massaro JM, Bamberg F, O'Donnell CJ, Hoffmann U, Fox CS (2010) Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. Int J Obes (Lond) 34:781–787

    Article  CAS  Google Scholar 

  37. Balentine CJ, Marshall C, Robinson C et al (2010) Validating quantitative obesity measurements in colorectal cancer patients. J Surg Res 164:18–22

    Article  PubMed  Google Scholar 

  38. Yoshizumi T, Nakamura T, Yamane M et al (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211:283–286

    Article  CAS  PubMed  Google Scholar 

  39. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  40. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  41. Choe EK, Kim D, Kim HJ, Park KJ (2013) Association of visceral obesity and early colorectal neoplasia. World J Gastroenterol 19:8349–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee CS, Murphy DJ, McMahon C et al (2015) Visceral adiposity is a risk factor for poor prognosis in colorectal cancer patients receiving adjuvant chemotherapy. J Gastrointest Cancer 46:243–250

    Article  CAS  PubMed  Google Scholar 

  43. Petrangeli E, Coroniti G, Brini AT et al (2016) Hypoxia promotes the inflammatory response and stemness features in visceral fat stem cells from obese subjects. J Cell Physiol 231:668–679

    Article  CAS  PubMed  Google Scholar 

  44. Lee JY, Lee HS, Lee DC et al (2014) Visceral fat accumulation is associated with colorectal cancer in postmenopausal women. PLoS ONE 9:e110587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yamamoto N, Fujii S, Sato T et al (2012) Impact of body mass index and visceral adiposity on outcomes in colorectal cancer. Asia Pac J Clin Oncol 8:337–345

    Article  PubMed  Google Scholar 

  46. Donohoe CL, Doyle SL, Reynolds JV (2011) Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  47. Himbert C, Ose J, Nattenmuller J et al (2019) Body Fatness, Adipose Tissue Compartments, and Biomarkers of Inflammation and Angiogenesis in Colorectal Cancer: The ColoCare Study. Cancer Epidemiol Biomark Prev 28:76–82

    Article  Google Scholar 

  48. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18

    Article  PubMed  Google Scholar 

  49. Zhang L, Han J (2017) Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun 486:224–231

    Article  CAS  PubMed  Google Scholar 

  50. Palmieri EM, Menga A, Martin-Perez R et al (2017) Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 20:1654–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  52. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogenesis 5:e189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dolce V, Cappello AR, Lappano R, Maggiolini M (2011) Glycerophospholipid synthesis as a novel drug target against cancer. Curr Mol Pharmacol 4:167–175

    Article  CAS  PubMed  Google Scholar 

  56. Kurabe N, Hayasaka T, Ogawa M et al (2013) Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci 104:1295–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Halama A, Guerrouahen BS, Pasquier J, Satheesh NJ, Suhre K, Rafii A (2017) Nesting of colon and ovarian cancer cells in the endothelial niche is associated with alterations in glycan and lipid metabolism. Sci Rep 7:39999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Virtanen KA, Lonnroth P, Parkkola R et al (2002) Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 87:3902–3910

    Article  CAS  PubMed  Google Scholar 

  59. Ryden M, Arner P (2017) Subcutaneous adipocyte lipolysis contributes to circulating lipid levels. Arterioscler Thromb Vasc Biol 37:1782–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jung TW, Kim ST, Lee JH et al (2017) Phosphatidylcholine causes lipolysis and apoptosis in adipocytes through the tumor necrosis factor alpha-dependent pathway. Pharmacology 101:111–119

    Article  PubMed  CAS  Google Scholar 

  61. Sagar G, Sah RP, Javeed N et al (2016) Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 65:1165–1174

    Article  CAS  PubMed  Google Scholar 

  62. Chen Y, Xie Y, Xu L et al (2017) Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int J Cancer 140:900–913

    Article  CAS  PubMed  Google Scholar 

  63. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14:754–762

    Article  CAS  PubMed  Google Scholar 

  64. Dahlman I, Mejhert N, Linder K et al (2010) Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer 102:1541–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marien E, Meister M, Muley T et al (2015) Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int J Cancer 137:1539–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mistry DA, French PW (2016) Circulating phospholipids as biomarkers of breast cancer: a review. Breast Cancer (Auckl) 10:191–196

    CAS  Google Scholar 

  67. Pinho SS, Figueiredo J, Cabral J et al (2013) E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta 1830:2690–2700

    Article  CAS  PubMed  Google Scholar 

  68. Liwosz A, Lei T, Kukuruzinska MA (2006) N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J Biol Chem 281:23138–23149

    Article  CAS  PubMed  Google Scholar 

  69. Carayol M, Licaj I, Achaintre D et al (2015) Reliability of serum metabolites over a two-year period: a targeted metabolomic approach in fasting and non-fasting samples from EPIC. PLoS ONE 10:e0135437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Goodpaster BH, Thaete FL, Kelley DE (2000) Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci 904:18–24

    Article  CAS  PubMed  Google Scholar 

  71. Fang H, Berg E, Cheng X, Shen W (2018) How to best assess abdominal obesity. Curr Opin Clin Nutr Metab Care 21:360–365

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cheung AS, de Rooy C, Hoermann R et al (2016) Correlation of visceral adipose tissue measured by Lunar Prodigy dual X-ray absorptiometry with MRI and CT in older men. Int J Obes (Lond) 40:1325–1328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of all ColoCare participants. ColoCare samples were stored by the liquid biobank of the National Center for Tumor Diseases according to the SOPs of the Biomaterialbank Heidelberg. Lin Zielske, Anett Brendel, Renate Skatula, and Marita Wenzel supported biobanking at the National Center for Tumor Diseases. In addition, we would like to thank Rifraz Farook and Werner Diehl for their data management support and the ColoCare team, specifically Torsten Kölsch, Clare Abbenhardt-Martin, Susanne Jakob, and Judith Kammer for patient recruitment and follow-up.

Funding

Researchers involved in this work were funded by the ERA-NET, TRANSCAN project 01KT1503, the National Cancer Institute project R01 CA189184, R01 CA207371, U01 CA206110, and P30 CA042014, the Huntsman Cancer Foundation, as well as the National Institutes of Health under Ruth L. Kirschstein National Research Service Award T32 HG008962 from the National Human Genome Research Institute. This study was further supported by the Austrian Science Fund (FWF, Austria; project no. 1578-B19), the Federal Ministry of Education and Research (BMBF, Germany; project no. 01KT1512), the National Cancer Institute (INCa, France; project no. 2014-007), The Research Council of Norway (RCN, Norway; project no. 236564/H10), the Dutch Cancer Society (KWF Kankerbestrijding), and the Netherlands Organization for Health Research and Development (ZonMw, the Netherlands; project no. UW2013-6397) coordinated by the ERA-NET, JTC 2012 call on Translational Cancer Research (TRANSCAN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer Ose or Cornelia M. Ulrich.

Ethics declarations

Conflict of interest

C.M.U. has served as cancer center director oversight over research funded by several pharmaceutical companies, but has not received funding directly herself. The remaining authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ose, J., Holowatyj, A.N., Nattenmüller, J. et al. Metabolomics profiling of visceral and abdominal subcutaneous adipose tissue in colorectal cancer patients: results from the ColoCare study. Cancer Causes Control 31, 723–735 (2020). https://doi.org/10.1007/s10552-020-01312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-020-01312-1

Keywords

Navigation