Skip to main content
Log in

Kinetics of the Light-Oxygen Effect in Aqueous Solutions of Proteins

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Molecular mechanisms of the participation of proteins in reactive oxygen species (ROS) generation resulting from the singlet-oxygen effect upon laser exposure in solutions of various proteins are considered. The kinetic equations describing ROS generation are derived, and their approximate general solution is found in the analytical form. By comparison of the found kinetic dependences with experimental data, orders and rate constants of corresponding chemical reactions are determined. An analysis of the results makes it possible to consider that fundamental mechanisms of ROS formation reactions in solutions of various proteins are identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. V. Snezhkina, A. V. Kudryavtseva, O. L. Kardymon, M. V. Savvateeva, N. V. Melnikova, G. S. Krasnov, and A. A. Dmitriev, “ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells,” Oxid. Med. Cell. Longev. 2019, 6175804 (2019). https://doi.org/10.1155/2019/6175804

    Article  Google Scholar 

  2. S. V. Gudkov, M. A. Grinberg, V. Sukhov and V. Vodeneev, “Effect of Ionizing Radiation on Physiological and Molecular Processes in Plants,” J. Environ. Radioact. 202, 8 (2019). .https://doi.org/10.1016/j.jenvrad.2019.02.001

    Article  Google Scholar 

  3. S. D. Zakharov and A. V. Ivanov, “Light-Oxygen Effect in Cells and its Potential Applications in Tumor Therapy (Review),” Quant. Electron. 29, 1031 (1999). https://doi.org/10.1070/QE1999v029n12ABEH001629

    Article  ADS  Google Scholar 

  4. M. G. Sharapov and V. I. Novoselov, “Catalytic and Signal-Regulatory Role of Peroxiredoxins in Carcinogenesis,” Biochemistry 84, 147 (2019). https://doi.org/10.1134/S0320972519020015

    Article  Google Scholar 

  5. M. M. Borisova-Mubarakshina, D. V. Vetoshkina, and B. N. Ivanov, “Antioxidant and Signaling Functions of the Plastoquinone Pool in Higher Plants,” Physiol. Plant. 166, 181 (2019). https://doi.org/10.1111/ppl.12936

    Article  Google Scholar 

  6. V. E. Ivanov, O. E. Karp, V. I. Bruskov, S. N. Andreev, N. F. Bunkin, and S. V. Gudkov, “Formation of Long-Lived Reactive Products in Blood Serum under Heat Treatment and Low-Intensity Laser Irradiation, their Role in Hydrogen Peroxide Generation and DNA Damage,” Indian J. Biochem. Biophys. 56, 214 (2019).

    Google Scholar 

  7. M. J. Davies, “The Oxidative Environment and Protein Damage,” Biochim. Biophys. Acta 1703, 93 (2005). https://doi.org/10.1016/j.bbapap.2004.08.007

    Article  Google Scholar 

  8. Yu. P. Timofeev, S. D. Zakharov, A. V. Ivanov, E. B. Wolf, V. P. Danilov, T. M. Murina, K. T. Nguen, E. G. Novikov, N. A. Panasenko, S. N. Perov, and S. A. Skopinov, “Structural Rearrangements in the Aqueous Phase of Cell Suspensions and Protein Solutions Induced by a Light-Oxygen Effect,” Quant. Electron. 33, 149 (2003). https://doi.org/10.1070/QE2003v033n02ABEH002376

    Article  ADS  Google Scholar 

  9. M. J. Davies, Photochem. Photobiol. Sci. 3, 17 (2004).

    Article  Google Scholar 

  10. C. L. Hawkins and M. J. Davies, “Generation and Propagation of Radical Reactions on Proteins,” Biochim. Biophys. Acta 1504, 196 (2001). doi (00 00252-8https://doi.org/10.1016/s0005-2728

  11. G. M. Panchenkov and V. L. Lebedev, Chemical Kinetics and Catalysis (Khimiya, Moscow, 1985).

    Google Scholar 

  12. J. Takagi and K. Ishigure, “Thermal Decomposition of Hydrogen Peroxide and Its Effect on Reactor Water Monitoring of Boiling Water Reactors,” Nucl. Sci. Eng. 89, 177 (1985). https://doi.org/10.13182/NSE85-A18191

    Article  Google Scholar 

  13. K. Levenberg, “A method for the Solution of Certain Non-Linear Problems in Least Squares,” Quart. Appl. Math. 2, 164 (1944). https://doi.org/10.1090/qam/10666

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM J. Appl. Math. 11, 431 (1963). https://doi.org/10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, New York, 1999).

    Book  Google Scholar 

Download references

Funding

The work supported by the MEPhI Academic Excellence Project, project no. 02.a03.21.0005 and the Russian Foundation for Basic Research, project no. 20-34-70037.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Shkirin or S. V. Gudkov.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkirin, A.V., Suyazov, N.V., Chirikov, S.N. et al. Kinetics of the Light-Oxygen Effect in Aqueous Solutions of Proteins. Bull. Lebedev Phys. Inst. 47, 76–81 (2020). https://doi.org/10.3103/S1068335620030070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620030070

Keywords:

Navigation