Skip to main content
Log in

Nanofiber based displacement sensor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the realization of a displacement sensor based on an optical nanofiber. A single gold nano-sphere is deposited on top of a nanofiber and the system is placed within a standing wave which serves as a position ruler. Scattered light collected within the guided mode of the fiber gives a direct measurement of the nanofiber displacement. We calibrated our device and found a sensitivity up to 1.2 nm/\(\sqrt{\text {Hz}}\). As an example of application, a mechanical model based on the Mie scattering theory is then used to evaluate the optically induced force on the nanofiber by an external laser and its displacement. With our sensing system, we demonstrate that an external force of 1 pN applied at the nanofiber waist can be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Muschielok, J. Andrecka, A. Jawhari, F. Brückner, P. Cramer, J. Michaelis, A nano-positioning system for macromolecular structural analysis. Nat. Methods 5(11), 965 (2008)

    Article  Google Scholar 

  2. J. Andrecka, B. Treutlein, M.A.I. Arcusa, A. Muschielok, R. Lewis, A.C.M. Cheung, P. Cramer, J. Michaelis, Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res. 37(17), 5803–5809 (2009)

    Article  Google Scholar 

  3. L. Mercier, B. de Lépinay, B.B. Pigeau, P. Vincent, P. Poncharal, O. Arcizet, A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2d force fields. Nat Nanotechnol. 12(2), 156 (2017)

    Article  ADS  Google Scholar 

  4. L. Mercier, B. de Lépinay, B.B. Pigeau, O. Arcizet, Eigenmode orthogonality breaking and anomalous dynamics in multimode nano-optomechanical systems under non-reciprocal coupling. Nat. Commun. 9(1), 1401 (2018)

    Article  ADS  Google Scholar 

  5. X.L. Feng, R. He, P. Yang, M.L. Roukes, Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7(7), 1953–1959 (2007)

    Article  ADS  Google Scholar 

  6. W.G. Conley, A. Raman, C.M. Krousgrill, S. Mohammadi, Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. Nano Lett. 8(6), 1590–1595 (2008)

    Article  ADS  Google Scholar 

  7. A. Eichler, J. Moser, J. Chaste, I. Mariusz Zdrojek, Wilson-Rae, and Adrian Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6(6), 339 (2011)

  8. G. Anetsberger, O. Arcizet, Q.P. Unterreithmeier, R. Rivière, A. Schliesser, E.M. Weig, J.P. Kotthaus, T.J. Kippenberg, Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5(12), 909–914 (2009)

    Article  Google Scholar 

  9. J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101(19), 197203 (2008)

    Article  ADS  Google Scholar 

  10. J.M. Nichol, E.R. Hemesath, L.J. Lauhon, R. Budakian, Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator. Phys. Rev. B 85(5), 054414 (2012)

    Article  ADS  Google Scholar 

  11. O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, S. Seidelin, A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat. Phys. 7(11), 879–883 (2011)

    Article  Google Scholar 

  12. A.N. Cleland, J.S. Aldridge, D.C. Driscoll, A.C. Gossard, Nanomechanical displacement sensing using a quantum point contact. Appl. Phys. Lett. 81(9), 1699–1701 (2002)

    Article  ADS  Google Scholar 

  13. I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E.M. Weig, K. Karrai, Fluctuating nanomechanical system in a high finesse optical microcavity. Opt. Express 17(15), 12813–12820 (2009)

    Article  ADS  Google Scholar 

  14. K.P. Nayak, P.N. Melentiev, M. Morinaga, V.I. Fam Le Kien, Balykin, and K Hakuta, Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15(9), 5431–5438 (2007)

  15. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, A. Rauschenbeutel, Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104(20), 203603 (2010)

    Article  ADS  Google Scholar 

  16. N.V. Corzo, B. Gouraud, A. Chandra, A. Goban, A.S. Sheremet, D.V. Kupriyanov, J. Laurat, Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett. 117(13), 133603 (2016)

    Article  ADS  Google Scholar 

  17. R. Yalla, M. Fam Le Kien, Morinaga, and K Hakuta, Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. Phys. Rev. Lett. 109(6), 063602 (2012)

  18. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller, Chiral quantum optics. Nature 541(7638), 473–480 (2017)

    Article  ADS  Google Scholar 

  19. C. Ding, V. Loo, S. Pigeon, R. Gautier, E.W. Maxime Joos, E. Giacobino, A. Bramati, Q. Glorieux, Fabrication and characterization of optical nanofiber interferometer and resonator for the visible range. New J. Phys. 21(7), 073060 (2019)

    Article  ADS  Google Scholar 

  20. P.É. Larré, I. Carusotto, Optomechanical signature of a frictionless flow of superfluid light. Phys. Rev. A 91(5), 053809 (2015)

    Article  ADS  Google Scholar 

  21. A. Freikamp, A.-L. Cost, C. Grashoff, The piconewton force awakens: quantifying mechanics in cells. Trends Cell Biol. 26(11), 838–847 (2016)

    Article  Google Scholar 

  22. J.T. Finer, R.M. Simmons, J.A. Spudich, Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368(6467), 113–119 (1994)

    Article  ADS  Google Scholar 

  23. J.M. Ward, A. Maimaiti, V.H. Le, S. Nic Chormaic, Contributed review: optical micro-and nanofiber pulling rig. Rev. Sci. Instrum. 85(11), 111501 (2014)

    Article  ADS  Google Scholar 

  24. S. Pablo, A. Grover Jeffrey, E. Hoffman Jonathan, R. Sylvain, K. Fatemi Fredrik, A. Orozco Luis, L. Rolston Steven, Optical nanofibers: a new platform for quantum optics. In: Advances in Atomic, Molecular, and Optical Physics, vol. 66, pp. 439–505. Elsevier, London (2017)

  25. L. Ding, C. Belacel, S. Ducci, G. Leo, I. Favero, Ultralow loss single-mode silica tapers manufactured by a microheater. Appl. Opt. 49(13), 2441–2445 (2010)

    Article  ADS  Google Scholar 

  26. M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, Q. Glorieux, Polarization control of linear dipole radiation using an optical nanofiber. Phys. Rev. Appl. 9(6), 064035 (2018)

    Article  ADS  Google Scholar 

  27. W. Allan David, A. Barnes James, A modified Allan variance with increased oscillator characterization ability. In: Proceedings of the 35th Annual Frequency Control Symposium, vol. 5, pp. 470–475 (1981)

  28. L.M. Bellan, J. Kameoka, H.G. Craighead, Measurement of the Young’s moduli of individual polyethylene oxide and glass nanofibres. Nanotechnology 16(8), 1095 (2005)

    Article  ADS  Google Scholar 

  29. S. Timoshenko, D.H. Young, Elements of strength of materials (Van Nostrand, New York, 1968)

    Google Scholar 

  30. F.G. Mitri, Radiation force and torque of light-sheets. J. Opt. 19(6), 065403 (2017)

    Article  ADS  Google Scholar 

  31. V. Loo, G. Blanquer, M. Joos, Q. Glorieux, Y. De Wilde, V. Krachmalnicoff, Imaging light scattered by a subwavelength nanofiber, from near field to far field. Opt. Express 27(2), 350–357 (2019)

    Article  ADS  Google Scholar 

  32. M. Joos, A. Bramati, Q. Glorieux, Complete polarization control for a nanofiber waveguide using the scattering properties. Opt. Express 27(13), 18818–18830 (2019)

    Article  ADS  Google Scholar 

  33. Q. Fontaine, T. Bienaimé, S. Pigeon, E. Giacobino, A. Bramati, Q. Glorieux, Observation of the Bogoliubov dispersion in a fluid of light. Phys. Rev. Lett. 121(18), 183604 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Arno Rauschenbeutel for designing an early prototype of this device and for fruitful discussions on the sensitivity measurements. This research is supported by the Emergences Ville de Paris Nano2 project, the Caiyuanpei Programme, and the European Union’s Horizon 2020 research and innovation program under grant agreement no. 828972. C.D. is supported by a CSC scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Glorieux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Joos, M., Bach, C. et al. Nanofiber based displacement sensor. Appl. Phys. B 126, 103 (2020). https://doi.org/10.1007/s00340-020-07452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07452-1

Navigation