Skip to main content
Log in

Biodegradation of Tetracycline Antibiotic by Laccase Biocatalyst Immobilized on Chitosan-Tripolyphosphate Beads

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

In this study, biodegradation of tetracycline, which is one of the most commonly used antibiotics, was investigated. In order to convert tetracycline into inactive oxidative metabolites, laccase immobilized onto rigid tripolyphosphate-treated chitosan beads was utilized. For immobilization, chitosan surfaces were activated with glutaraldehyde-linker reagents after tripolyphosphate treatment. The glutaraldehyde-linked rigid chitosan beads showed the higher immobilization capacity of laccase, providing thermostability, reusability, and the higher tetracycline transformation activity. Subsequently, synthetic mediators, including 2,2'‑azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and lignophenolic mediators like violuric, syringic and ferulic acids, 1-hydroxybenzotriazole, and vanillin, were investigated to activate laccase as electron mediators with KI assistance. Among them, the immobilized laccase showed highest tetracycline antibiotic inactivation activity when ABTS was used as a mediator. In the presence of KI, violuric and ferulic acids, 1-hydroxybenzotriazole and vanillin functioned as laccase mediators and inactivated tetracycline almost completely, however, the effect was not observed when they did individually. Finally, Vmax of the immobilized laccase was determined as 76.3 ± 4.3 µmoles mg–1 min–1 against tetracycline, which was 2-fold higher than that of the free enzyme. These results will provide novel insights into laccase-based removal of non-biodegradable organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Liu, X., Steele, J.C., and Meng, X.Z., Environ. Pollut., 2017, vol. 223, pp. 161–169.

    Article  CAS  Google Scholar 

  2. Rajapakse, S., Chrishan Shivanthan, M., Samaranayake, N., and Rodrigo, C., Deepika Fernando, S., Pathog. Glob. Health, 2013, vol. 107, no. 4, pp. 162–169.

    Article  CAS  Google Scholar 

  3. Kullar, R., Sakoulas, G., Deresinski, S., and van Hal, S. J., J. Antimicrob. Chemother., 2016, vol. 71, no. 3, pp. 576–586.

    Article  CAS  Google Scholar 

  4. Arda, B., Yamazhan, T., Sipahi, O.R., Islekel, S., Buke, C., and Ulusoy, S., Int. J. Antimicrob. Agents, 2005, vol. 25, no. 5, pp. 414–418.

    Article  CAS  Google Scholar 

  5. Huo, T.I., J. Chin. Med. Assoc., 2010, vol. 73, no. 11, pp. 557–558.

    Article  Google Scholar 

  6. Van Boeckel, T.P., Gandra, S., Ashok, A., Caudron, Q., Grenfell B.T., Levin S.A., and Laxminarayan R., Lancet. Infect. Dis., 2014, vol. 14, no. 8, pp. 742–750.

    Article  Google Scholar 

  7. Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S. A., et al., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 15, pp. E3463–E3470.

    Article  CAS  Google Scholar 

  8. Cai, M., Ma, S., Hu, R., Tomberlin, J.K., Yu, C., Huang, Y., et al., Environ. Pollut., 2018, vol. 242, pt. A, pp. 634–642.

  9. Chen, J., Michel, F.C., Jr., Sreevatsan, S., Morrison, M., and Yu, Z., Microb. Ecol., 2010, vol. 60, no. 3, pp. 479–486.

    Article  CAS  Google Scholar 

  10. Laht, M., Karkman, A., Voolaid, V., Ritz, C., Tenson, T., Virta, M., and Kisand, V., PLoS One, 2014, vol. 9, no. 8. e103705.

    Article  Google Scholar 

  11. Kim, S., Eichhorn, P., Jensen, J.N., Weber, A.S., and Aga, D.S., Environ. Sci. Technol., 2005, vol. 39, no. 15, pp. 5816–5823.

    Article  CAS  Google Scholar 

  12. Miyata, M., Ihara, I., Yoshid, G., Toyod, K., and Umetsu, K., Water Sci. Technol., 2011, vol. 63, no. 3, pp. 456–461.

    Article  CAS  Google Scholar 

  13. de Godos, I., Munoz, R., and Guieysse, B., J. Hazard. Mater., 2012, vol. 229–230, pp. 446–449.

    Article  Google Scholar 

  14. Liu, L., Liu, Y.H., Wang, Z., Liu, C.X., Huang, X., and Zhu, G.F., J. Hazard. Mater., 2014, vol. 278, pp. 304–310.

    Article  CAS  Google Scholar 

  15. Wen, X., Jia, Y., and Li, J., J. Hazard. Mater., 2010, vol. 177, no. 1–3, pp. 924–928.

    Article  CAS  Google Scholar 

  16. Wen, X., Jia, Y., and Li, J., Chemosphere, 2009, vol. 75, no. 8, pp. 1003–1007.

    Article  CAS  Google Scholar 

  17. Sun, K., Huang, Q., and Li, S., J. Hazard. Mater., 2017, vol. 331, pp. 182–188.

    Article  CAS  Google Scholar 

  18. Yang, J., Lin, Y., Yang, X., Ng, T.B., Ye, X., and Lin, J., J. Hazard. Mater., 2017, vol. 322, no. Pt B, pp. 525–531.

  19. Ding, H., Wu, Y., Zou, B., Lou, Q., Zhang, W., Zhong, J., et al., J. Hazard. Mater., 2016, vol. 307, pp. 350–358.

    Article  CAS  Google Scholar 

  20. Kudanga, T., Nyanhongo, G.S., Guebitz, G.M., and Burton, S., Enzyme Microb. Technol., 2011, vol. 48, no. 3, pp. 195–208.

    Article  CAS  Google Scholar 

  21. Morozova, O.V., Shumakovich, G.P., Shleev, S.V., and Iaropolov, A.I., Appl. Biochem. Microbiol., 2007, vol. 43, no. 5, pp. 583–597.

    Article  CAS  Google Scholar 

  22. Asgher, M., Noreen, S., and Bilal, M., Int. J. Biol. Macromol., 2017, vol. 95, pp. 54–62.

    Article  CAS  Google Scholar 

  23. Huber, D., Tegl, G., Baumann, M., Sommer, E., Gorji, E. G., Borth, N., et al., Carbohydr. Polym., 2017, vol. 157, pp. 814–822.

    Article  CAS  Google Scholar 

  24. Shi, H., Peng, J., Li, J., Mao, L., Wang, Z., and Gao, S., J. Hazard. Mater., 2016, vol. 317, pp. 81–89.

    Article  CAS  Google Scholar 

  25. Kadam, A. A., and Lee, D. S., Bioresour. Technol., 2015, vol. 193, pp. 563–567.

    Article  CAS  Google Scholar 

  26. Poon, L., Wilson, L. D., and Headley, J. V., Carbohydr. Polym., 2014, vol. 109, pp. 92–101.

    Article  CAS  Google Scholar 

  27. Rocasalbas, G., Francesko, A., Tourino, S., Fernandez-Francos, X., Guebitz, G. M., and Tzanov, T., Carbohydr. Polym., 2013, vol. 92, no. 2, pp. 989–996.

    Article  CAS  Google Scholar 

  28. Gabriel Paulraj, M., Ignacimuthu, S., Gandhi, M.R., Shajahan, A., Ganesan, P., Packiam, S.M., and Al-Dhabi, N.A., Int. J. Biol. Macromol., 2017, vol. 104, no. Pt B, pp. 1813–1819.

  29. Buranachai, T., Praphairaksit, N., and Muangsin, N., AAPS Pharm. Sci.Tech., 2010, vol. 11, no. 3, pp. 1128–1137.

    Article  CAS  Google Scholar 

  30. Xu, H. and Matysiak, S., Chem. Commun. (Camb.)., 2017, vol. 53, no. 53, pp. 7373–7376.

    Article  CAS  Google Scholar 

  31. Hilgers, R., Vincken, J. P., Gruppen, H., and Kabel, M. A., ACS Sustain. Chem. Eng., 2018, vol. 6, no. 2, pp. 2037–2046.

    Article  CAS  Google Scholar 

  32. Shah, M. M. and Aust, S. D., J. Biol. Chem., 1993, vol. 268, no. 12, pp. 8503–8506.

    CAS  PubMed  Google Scholar 

  33. Boschloo, G. and Hagfeldt, A., Acc. Chem. Res., 2009, vol. 42, no. 11, pp. 1819–1826.

    Article  CAS  Google Scholar 

  34. Kulys, J., Krikstopaitis, K., and Ziemys, A., J. Biol. Inorg. Chem., 2000, vol. 5, no. 3, pp. 333–340.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ajou University research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-Y. Choi.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Choi, KY. Biodegradation of Tetracycline Antibiotic by Laccase Biocatalyst Immobilized on Chitosan-Tripolyphosphate Beads. Appl Biochem Microbiol 56, 306–312 (2020). https://doi.org/10.1134/S0003683820030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820030047

Keywords:

Navigation