Skip to main content
Log in

Evaluation of the Biotechnological Potential of New Bacterial Strains Capable of Phenol Degradation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A number of bacteria, including rhizospheric bacteria, capable of transforming aliphatic and aromatic compounds to varying degrees were isolated from clean soils and soils contaminated with polycyclic aromatic hydrocarbons. Seven bacteria capable of decomposing phenol at a concentration of at least 500 mg/L were selected. Identification by the 16S rRNA gene showed that they belong to the genera Rhodococcus, Pseudomonas, Stenotrophomonas, Lysinibacillus, and Isoptericola. Determination of the activity of phenol destruction enzymes in these cultures showed the absence of a meta-pathway of catechol cleavage during phenol degradation. The activity of catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase was detected in cell-free extracts. The activity of the latter enzyme was 15 times higher than the catechol 1,2‑dioxygenase, that was described for the first time for members of the genus Isoptericola. Strains isolated from the rhizosphere of plants growing in contaminated soil were capable of destroying up to 15 individual pollutants, such as aliphatic hydrocarbons, chlorophenols, 2,4,5-trichlorophenoxyacetic acid, and caprolactam. The presence of enzymes, such as β-galactosidase and lysine-decarboxylase, was shown with the use of biochemical test systems for representatives of the genera Stenotrophomonas and Isoptericola. The isolated bacteria can be used both to create biopreparations for bioremediation and to create producer strains for the target enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wang, Q., Zhang, S., Li, Y., and Klassen, W., J. Environ. Protect., 2011, no. 2, pp. 47–55.

  2. Nešvera, J., Rucká, L., and Pátek, M., Adv. Appl. Microbiol., 2015, vol. 93, pp. 107–160. https://doi.org/10.1016/bs.aambs.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  3. Geng, A., Soh, A.E.W., Lim, C.J., and Loke, L.C.T., Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 5, pp. 728–735. https://doi.org/10.1007/s00253-005-0199-z

    Article  CAS  PubMed  Google Scholar 

  4. Szőköl, J., Rucká, L., Šimčíková, M., Halada, P., Nešvera, J., and Pátek, M., Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 19, pp. 8267–8279. https://doi.org/10.1007/s00253-014-5881-5886

    Article  PubMed  Google Scholar 

  5. Ahmad, S., Syed, M., Arif, N., Shukor, M., and Shamaan, N., Aust. J. Basic Appl. Sci., 2011, vol. 5, no. 8, pp. 1035–1045.

    CAS  Google Scholar 

  6. Zhai, Z., Wang, H.YanS., and Yao, J., J. Chem. Technol. Biotechnol., 2012, vol. 87, no. 1, pp. 105–111.

    Article  CAS  Google Scholar 

  7. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., J. Bacteriol., 1991, vol. 173, no. 2, pp. 697–703.

    Article  CAS  Google Scholar 

  8. Thompson, J.D., Higgins, D.G., and Gibson, T.J., Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673–4680.

    Article  CAS  Google Scholar 

  9. Hegeman, G.D., J. Bacteriol., 1966, vol. 91, no. 3, pp. 1140–1154.

    Article  CAS  Google Scholar 

  10. Crawford, R.L., Hutton, S.W., and Chapman, P.J., J. Bacteriol., 1975, vol. 121, no. 3, pp. 794–799.

    Article  CAS  Google Scholar 

  11. Fujisawa, H. and Hayaishi, O., J. Biol. Chem., 1968, vol. 243, no. 10, pp. 2673–2681.

    CAS  PubMed  Google Scholar 

  12. Schlömann, M., Schmidt, E., and Knackmuss, H.-J., J. Bacteriol., 1990, vol. 172, no. 9, pp. 5112–5118.

    Article  Google Scholar 

  13. Mazzoli, R., Pessione, E., Giuffrida, M.G., Fattori, P., Barello, C., Giunta, C., and Lindley, N.D., Arch. Microbiol., 2007, vol. 188, no. 1, pp. 55–68. https://doi.org/10.1007/s00203-007-0223-z

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y., Wang, W., Shah, S.B., Zanaroli, G., Xu, P., and Tang, H., Appl. Microbiol. Biotechnol., 2019. https://doi.org/10.1007/s00253-019-10271-w

    Article  Google Scholar 

  15. Li, H., Meng, F., Duan, W., Lin, Y., and Zheng, Y., Ecotoxicol. Environ. Saf., 2019, vol. 184. Article 109658. https://doi.org/10.1016/j.ecoenv.2019.109658

    Article  CAS  PubMed  Google Scholar 

  16. Lee, D.W., Lee, H., Kwon, B.O., Khim, J.S., Yim, U.H., Kim, B.S., and Kim, J.J., Environ. Pollut., 2018, vol. 241, pp. P. 254–264.

  17. Bakalidou, A., Kampfer, P., Berchtold, M., Kuhnigk, T., Wenzel, M., and Konig, H., Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pt. 4. P. 1185–1192.

    CAS  PubMed  Google Scholar 

  18. Stackebrandt, E., Schumann, P., and Cui, X.-L., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pt.3, pp. 685–688.

    Article  CAS  Google Scholar 

  19. Kaur, N., Rajendran, M.K., Kaur, G., and Shanmugam, M., Antonie van Leeuwenhoek, 2014, vol. 106, no. 2, pp. 301–307.

    Article  CAS  Google Scholar 

  20. Kim, Y.H., Cho, K., Yun, S.-H., Kim, J.Y., Kwon, K.-H., Yoo, J.S., and Kim, S.I., Proteomics, 2006, vol. 6, no. 4, pp. 1301–1318.

    Article  CAS  Google Scholar 

  21. Park, S.H., Kim, J.W., Yun, S.H., Leem, S.H., Kahng, H.Y., and Kim, S.I., J. Microbiol., 2006, vol. 44, no. 6, pp. 632–640.

    CAS  PubMed  Google Scholar 

  22. Grund, E., Knorr, C., and Eichenlaub, R., Appl. Environ. Microbiol., 1990, vol. 56, no. 5, pp. 1459–1464.

    Article  CAS  Google Scholar 

  23. Patrauchan, M.A., Florizone, C., Dosanjh, M., Mohn, W.W., Davies, J., and Eltis, L.D., J. Bacteriol., 2005, vol. 187, no. 12, pp. 4050–4063.

    Article  CAS  Google Scholar 

  24. Lee, C.S., Jung, Y.-T., Park, S., Oh, T.-K., and Yoon, J.-H., Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pt. 2, pp. 281–286.

    Article  CAS  Google Scholar 

  25. Begum, M.A., Rahul, K., Sasikala, C., and Ramana, C.V., Arch. Microbiol., 2016, vol. 198, no. 4, pp. 325–332.https://doi.org/10.1007/s00203-016-1194-8

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad, V., Iqbal, A.N., Haseeb, M., and Khan, M.S., Anaerobe, 2014, vol. 27, no. 1, pp. 87–95.https://doi.org/10.1016/j.anaerobe.2014.04.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research (project no. 18-34-00964).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Solyanikova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polivtseva, V.N., Anokhina, T.O., Iminova, L.R. et al. Evaluation of the Biotechnological Potential of New Bacterial Strains Capable of Phenol Degradation. Appl Biochem Microbiol 56, 298–305 (2020). https://doi.org/10.1134/S0003683820030096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820030096

Keywords:

Navigation