Skip to main content
Log in

Well-Posedness of the Kadomtsev–Petviashvili Hierarchy, Mulase Factorization, and Frölicher Lie Groups

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We recall the notions of Frölicher and diffeological spaces, and we build regular Frölicher Lie groups and Lie algebras of formal pseudo-differential operators in one independent variable. Combining these constructions with a smooth version of Mulase’s deep algebraic factorization of infinite-dimensional groups based on formal pseudo-differential operators, we present two proofs of the well-posedness of the Cauchy problem for the Kadomtsev–Petviashvili (KP) hierarchy in a smooth category. We also generalize these results to a KP hierarchy modelled on formal pseudo-differential operators with coefficients which are series in formal parameters, we describe a rigorous derivation of the Hamiltonian interpretation of the KP hierarchy, and we discuss how solutions depending on formal parameters can lead to sequences of functions converging to a class of solutions of the standard KP-II equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As explained in the previous paragraphs, our favoured setting is the category of Frölicher spaces. This category is a full subcategory of the category of diffeological spaces, and therefore it is natural to begin by considering the latter spaces, as we do in Sect. 2.

  2. Jets are considered in [54], in the classical paper [7] and in the more recent review [47]; we note that in [54] the author introduces jets within the category DS of differential spaces, but it is known that Frölicher spaces form a subcategory of DS, see [32]. Moreover, as explained in Sect. 2.5 (see also [19, 32]) the category of Frölicher spaces is Cartesian closed, complete and cocomplete, and so infinite jets in Frölicher spaces can be defined by adapting the constructions of [7, 47].

  3. The following example was essentially suggested by the referee: let us fix a smooth function \(u_0:S^1 \rightarrow { \! \mathrm \ I\!K}\) and think of it as a (trivial) element of \(R_z = C^\infty (S^1,{ \! \mathrm \ I\!K})[[z]]\). Then, we obtain a unique solution \(u = \sum \sum f_n^q(x,qt_1,q^2y,q^3t, qt_4, \cdots )z^n q^k\) to the q-deformed KP-II Eq. (5.19), with y-dependence of u fixed by integration. On the other hand, let us choose a smooth function f on \(S^1\) with \(f(0)=0\) and such that \({\tilde{u}}_0(x,q^2 y) = q u_0(x)+ q f(q^2 y)\) is different from \(u(x,0,q^2 y,0,\cdots )\). Then, the solution to KP-II with initial data \((1/q){\tilde{u}}_0\) arising via Bourgain’s theorem [9] induces, as explained in Sect. 4.2, a solution \({\tilde{u}}\) to our q-deformed KP-II equation. The function \({\tilde{u}}\) cannot coincide with our solution u, even though they coincide at \(t=y=0\).

References

  1. Ablowitz, M., Chakravarty, S., Takhtajan, L.A.: A self-dual Yang–Mills hierarchy and its reductions to integrable systems in 1 + 1 and 2 + 1 dimensions. Commun. Math. Phys. 158, 289–314 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Adams, M., Ratiu, T., Schmidt, R.: A Lie group structure for pseudo-differential operators. Math. Ann. 273(4), 529–551 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Adams, M., Ratiu, T., Schmidt, R.: A Lie group structure for Fourier integral operators. Math. Ann. 276(1), 19–41 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Adler, M.: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–Devries type equations. lnvent. Math. 50, 219–248 (1979)

    ADS  MATH  Google Scholar 

  5. Batubenge, A., Ntumba, P.: On the way to Frölicher Lie groups. Quaest. Math. 28(1), 73–93 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Beals, M., Reed, M.: Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems. Trans. Am. Math. Soc. 285, 159–184 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Bernshtein, N., Rozenfel’d, B.I.: Homogeneous spaces of infinite-dimensional Lie algebras and characteristic classes of foliations. Russ. Math. Surv. 28, 107–142 (1973)

    MathSciNet  MATH  Google Scholar 

  8. Bourbaki, N.: Elements of Mathematics. Springer, Berlin (1998)

    MATH  Google Scholar 

  9. Bourgain, J.: On the Cauchy problem for the Kadomtsev–Petviashvili equation. Geom. Funct. Anal. 3(4), 315–341 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Christensen, D., Wu, E.: Tangent spaces and tangent bundles for diffeological spaces. Cahiers de Topologie et Géométrie Différentielle Volume LVI I, 3–50 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Demidov, E.E.: On the Kadomtsev–Petviashvili hierarchy with a noncommutative timespace. Funct. Anal. Appl. 29(2), 131–133 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Demidov, E.E.: Noncommutative deformation of the Kadomtsev–Petviashvili hierarchy. In: “Algebra. 5, Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI)”, Moscow, 1995. (Russian). J. Math. Sci. (New York) 88 (4), (1998), 520–536 (English)

  13. Dickey, L.A.: Soliton Equations and Hamiltonian Systems. Advanced Series in Mathematical Physics, vol. 12, 2nd edn. World Scientific Publ. Co., Singapore (2003)

    Google Scholar 

  14. Dodson, C., Galanis, G., Vassiliou, E.: Geometry in the Fréchet Context: A Projective Limit Approach London Mathematical Society Lecture Notes Series 428. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  15. Dorizzi, G., Grammaticos, B., Ramani, A., Winternitz, P.: Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? J. Math. Phys. 27, 2848–2852 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Dugmore, D., Ntumba, P.: On tangent cones of Frölicher spaces. Quaest. Math. 30(1), 67–83 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Eslami Rad, A., Reyes, E.G.: The Kadomtsev–Petviashvili hierarchy and the Mulase factorization of formal Lie groups. J. Geom. Mech. 5(3), 345–363 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Frölicher, A., Kriegl, A.: Linear Spaces and Differentiation Theory Wiley Series in Pure and Applied Mathematics. Wiley Interscience, Hoboken (1988)

    MATH  Google Scholar 

  19. Frölicher, A.: Cartesian closed categories and analysis of smooth maps. In: Lawvere, F.W., Schanuel, S.H. (eds.) Categories in Continuum Physics. LNM 1174. Springer, Berlin (1986)

    Google Scholar 

  20. Galanis, G., Vassiliou, E.: A generalized frame bundle for certain Fréchet vector bundles and linear connections. Tokyo J. Math. 20(1), 129–137 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Gelfand, I.M., Dorfman, I.Y.: Infinite dimensional operators and infinite dimensional Lie algebras Funk. Anal. Priloz. 15, 23–40 (1981)

    Google Scholar 

  22. Glöckner, H.: Algebras whose groups of units are Lie groups. Studia Math. 153(2), 147–177 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Guieu, L., Roger, C.: L’ Algèbre et le groupe de Virasoro: Aspects géométriques et algébraiques, generalisations. Centre de Recherches Mathematiques, Université de Montreal (2007)

  24. Iglesias-Zemmour, P.: Diffeology. Mathematical Surveys and Monographs, vol. 185. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  25. Kriegl, A., Michor, P.W.: The Convenient Setting for Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (2000)

    Google Scholar 

  26. Khesin, B.A., Ovsienko, V.Y.: Symplectic leaves of the Gelfand–Dickii brackets and homotopy classes of non flattening curves. Funk. Anal. Prihoz. 24, 38–47 (1990)

    Google Scholar 

  27. Khesin, B.A., Zakharevich, I.: Poisson-Lie groups of pseudodifferential symbols. Commun. Math. Phys. 171(3), 475–530 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Khesin, B.A., Wendt, R.: The Geometry of Infinite-Dimensional Groups. Springer, Berlin (2009)

    MATH  Google Scholar 

  29. Kubo, F.: Non-commutative Poisson algebra structures on affine Kac–Moody algebras. J. Pure Appl. Algebra 126, 267–286 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Leslie, J.: On a diffeological group realization of certain generalized symmetrizable Kac–Moody lie algebras. J. Lie Theory 13, 427–442 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Magnot, J.-P.: Difféologie du fibré d’Holonomie en dimension infinie. C. R. Math. Soc. R. Can. 28, 121–127 (2006)

    MathSciNet  Google Scholar 

  32. Magnot, J.-P.: Ambrose–Singer theorem on diffeological bundles and complete integrability of KP equations. Int. J. Geom. Methods Mod. Phys. 10(9). Article ID 1350043 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Magnot, J.-P.: q-Deformed Lax Equations and Their Differential Geometric Background. Lambert Academic Publishing, Saarbrucken (2015)

    Google Scholar 

  34. Magnot, J.-P.: The group of diffeomorphisms of a non-compact manifold is not regular. Demonstr. Math. 51(1), 8–16 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Marschall, J.: Pseudo-differential operators with coefficients in Sobolev spaces. Trans. AMS 307(1), 335–361 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems. Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)

    Google Scholar 

  37. Mulase, M.: Complete integrability of the Kadomtsev–Petvishvili equation. Adv. Math. 54, 57–66 (1984)

    MathSciNet  MATH  Google Scholar 

  38. Mulase, M.: Solvability of the super KP equation and a generalization of the Birkhoff decomposition. Invent. Math. 92, 1–46 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Mulase, M.: Algebraic theory of the KP equations. In: Penner, R., Yau, S.T. (eds.) Perspectives in Mathematical Physics, pp. 157–223. International Press, Boston (1994)

    Google Scholar 

  40. Neeb, K.-H.: Towards a Lie theory of locally convex groups Japanese. J. Math. 1, 291–468 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)

    MATH  Google Scholar 

  42. Omori, H.: Infinite dimensional Lie groups. Translations of Mathematical Monographs, vol. 158. American Mathematical Society, Providence (1997)

    Google Scholar 

  43. Omori, H., Maeda, Y., Yoshioka, A., Kobayashi, O.: On regular Fréchet Lie groups IV. Tokyo J. Math. 5, 365–397 (1981)

    MATH  Google Scholar 

  44. Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras. Birkhäuser, Berlin (1990)

    MATH  Google Scholar 

  45. Pressley, A., Segal, G.B.: Loop Groups. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  46. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and lax equations II. Invent. Math. 63, 423–432 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Reyes, E.G.: Jet bundles, symmetries, Darboux transforms. In: Acosta-Humanez, P.B., Finkel, F., Kamran, N., Olver, P.J. (eds.) Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, vol. 563, pp. 137–164. AMS, Providence (2012)

    Google Scholar 

  48. Robart, T.: Sur l’intégrabilité des sous-algèbres de Lie en dimension infinie. Can. J. Math. 49(4), 820–839 (1997)

    MathSciNet  MATH  Google Scholar 

  49. Schiff, J.: Self-Dual Yang-Mills and the Hamiltonian Structures of Integrable Systems. IAS preprint IASSNS-HEP-92/34. arXiv: hep-th/9211070

  50. Semenov-Tian-Shansky, M.A.: What is a classical \(r\)-matrix? Funct. Anal. Appl. 17, 259–272 (1983)

    MATH  Google Scholar 

  51. Shiota, T.: Characterization of Jacobian varieties in terms of Soliton equations. Invent. Math. 83, 333–382 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Souriau, J.M.: Un algorithme générateur de structures quantiques; Astérisque. Hors Série, vols. 341–399 (1985)

  53. Sternberg, S.: Lectures on Differential Geometry, 2nd edn. AMS, Providence (1998)

    MATH  Google Scholar 

  54. Waliszewski, W.: Jest in differentiable spaces. Časopis pro pěstování matematiky 110, 241–249 (1985)

    MathSciNet  MATH  Google Scholar 

  55. Watanabe, Y.: Hamiltonian structure of Sato’s hierarchy of KP equations and a coadjoint orbit of a certain formal Lie group. Lett. Math. Phys. 7, 99–106 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Watanabe, Y.: Hamiltonian structure of M. Sato’s hierarchy of Kadomtsev–Petviashvili equation. Ann. Mat. Pura Appl. (4) 136, 77–93 (1984)

    MathSciNet  MATH  Google Scholar 

  57. Watts, J.: Diffeologies, differentiable spaces and symplectic geometry. University of Toronto, PhD thesis. arXiv:1208.3634v1

Download references

Acknowledgements

Both authors have been partially supported by CONICYT (Chile) via the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) operating grant # 1161691.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Magnot.

Additional information

Communicated by Nikolai Kitanine.

Dedicated to the memory of Professor Leonid Aleksandrovich Dickey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnot, JP., Reyes, E.G. Well-Posedness of the Kadomtsev–Petviashvili Hierarchy, Mulase Factorization, and Frölicher Lie Groups. Ann. Henri Poincaré 21, 1893–1945 (2020). https://doi.org/10.1007/s00023-020-00896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00896-3

Mathematics Subject Classification

Navigation