Skip to main content
Log in

Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present investigation is concerned with the reflection of plane waves at the free surface of a homogeneous, isotropic, nonlocal, micropolar rotating thermoelastic medium. The entire thermoelastic medium is rotating with a uniform angular velocity. It is observed that there exist four coupled plane waves, which travel through the medium with distinct speeds. Using appropriate boundary conditions, the reflection coefficients and energy ratios of various reflected waves are computed numerically with the help of the software MATLAB. The numerical values of modulus of reflection coefficients are presented graphically to show the effects of nonlocal, rotation and micropolar parameters. It has been verified that during reflection phenomena, the sum of modulus of energy ratios is approximately equal to unity at each angle of incidence. The effect of micropolarity on the phase velocities is also observed and shown graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Edelen, D.G.B., Laws, N.: On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43, 24–35 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eringen, A.C.: On nonlocal fluid mechanics. Int. J. Eng. Sci. 10, 561–575 (1972)

    Article  MATH  Google Scholar 

  6. Eringen, A.C.: Nonlocal continuum theory of liquid crystals. Mol. Cryst. Liq. Cryst. 75, 321–343 (1981)

    Article  Google Scholar 

  7. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  8. Chakraborty, A.: Wave propagation in anisotropic media with non-local elasticity. Int. J. Solid. Struct. 44, 5723–5741 (2007)

    Article  MATH  Google Scholar 

  9. Zenkour, A.M.: Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions. Microsyst. Technol. 23, 55–65 (2017)

    Article  Google Scholar 

  10. Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivate heat transfer. Waves Rand. Compl. Media 29, 595–613 (2019)

    Article  Google Scholar 

  11. Mondal, S., Sarkar, N., Sarkar, N.: Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity. J. Therm. Stress. 42, 1035–1050 (2019)

    Article  Google Scholar 

  12. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of micro-elastic solids I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Suhubi, E.S., Eringen, A.C.: Nonlinear theory of micro-elastic solids II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  15. Nowacki, W.: Couple stresses in the theory of thermoelasticity I. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 129–138 (1966)

    MATH  Google Scholar 

  16. Nowacki, W.: Couple stresses in the theory of thermoelasticity II. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 263–272 (1966)

    MATH  Google Scholar 

  17. Nowacki, W.: Couple stresses in the theory of thermoelasticity III. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 801–809 (1966)

    Google Scholar 

  18. Eringen, A.C.: Foundation of Micropolar Thermoelasticity. Courses and Lectures, CISM, Udine, vol. 23. Springer, Wien (1970)

    Book  MATH  Google Scholar 

  19. Tauchert, T.R., Claus Jr., W.D., Ariman, T.: The linear theory of micropolar thermoelasticity. Int. J. Eng. Sci. 6, 37–47 (1968)

    Article  MATH  Google Scholar 

  20. Eringen, A.C.: Plane waves in non-local micropolar elasticity. Int. J. Eng. Sci. 22, 1113–1121 (1984)

    Article  MATH  Google Scholar 

  21. Dhaliwal, R.S., Singh, A.: Micropolar Thermoelasticity. In: Hetnarski, R. (ed.) Thermal Stress II, Mechanical and Mathematical Methods, Series 2. North Holland, Amsterdam (1987)

    Google Scholar 

  22. Ciarletta, M.: A theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 22, 581–594 (1999)

    Article  MathSciNet  Google Scholar 

  23. Sherief, H.H., Hamza, F.A., El-Sayed, A.M.: Theory of generalized micropolar thermoelasticity and an axisymmetric half-space problem. J. Therm. Stress. 28, 409–437 (2005)

    Article  MathSciNet  Google Scholar 

  24. Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stress. 33, 226–250 (2010)

    Article  Google Scholar 

  25. El-Karamany, A.S., Ezzat, M.A.: On the three-phase-lag linear micropolar thermoelasticity theory. Eur. J. Mech. A/Solids 40, 198–208 (2013)

    Article  MathSciNet  Google Scholar 

  26. Khurana, A., Tomar, S.K.: Reflection of plane longitudinal waves from the stress-free boundary of a nonlocal micropolar solid half-space. J. Mech. Mater. Struct. 8, 95–107 (2013)

    Article  Google Scholar 

  27. Zhang, P., Wei, P., Tang, Q.: Reflection of micropolar elastic waves at the non-free surface of a micropolar elastic half-space. Acta Mech. 226, 2925–2937 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khurana, A., Tomar, S.K.: Rayleigh-type waves in nonlocal micropolar elastic solid half-space. Ultrasonics 73, 162–168 (2017)

    Article  Google Scholar 

  29. Deswal, S., Punia, B.S., Kalkal, K.K.: Thermodynamical interactions in a two-temperature dual-phase-lag micropolar thermoelasticity with gravity. Multidiscip. Model. Mater. Struct. 14, 102–124 (2018)

    Article  Google Scholar 

  30. Khurana, A., Tomar, S.K.: Waves at interface of dissimilar nonlocal micropolar elastic half-spaces. Mech. Adv. Mater. Struct. 26, 825–833 (2019)

    Article  Google Scholar 

  31. Schoenberg, M., Censor, D.: Elastic waves in rotating media. Q. Appl. Math. 31, 115–125 (1973)

    Article  MATH  Google Scholar 

  32. Chaudhuri, S.K.R., Debnath, L.: Magneto-thermo-elastic plane waves in rotating media. Int. J. Eng. Sci. 21, 155–163 (1983)

    Article  MATH  Google Scholar 

  33. Othman, M.I.A.: Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity. Acta Mech. 174, 129–143 (2005)

    Article  MATH  Google Scholar 

  34. Othman, M.I.A., Singh, B.: The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories. Int. J. Solids Struct. 44, 2748–2762 (2007)

    Article  MATH  Google Scholar 

  35. Roy, I., Acharya, D.P., Acharya, S.: Rayleigh wave in a rotating nonlocal magnetoelastic half-plane. J. Theor. Appl. Mech. 45, 61–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yadav, R., Deswal, S., Kalkal, K.K.: Propagation of waves in an initially stressed generalized electromicrostretch thermoelastic medium with temperature-dependent properties under the effect of rotation. J. Therm. Stress. 40, 281–301 (2017)

    Article  Google Scholar 

  37. Kalkal, K.K., Sheokand, S.K., Deswal, S.: Rotation and phase-lag effects in a micropolar thermo-viscoelastic half-space. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 427–441 (2019)

    Article  Google Scholar 

  38. Deswal, S., Punia, B.S., Kalkal, K.K.: Propagation of waves at an interface between a transversely isotropic rotating thermoelastic solid half space and a fiber-reinforced magneto-thermoelastic rotating solid half space. Acta Mech. 230, 2669–2686 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. C. R Mec. 344, 388–401 (2016)

    Article  Google Scholar 

  40. Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974)

    Article  MATH  Google Scholar 

  41. Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  42. Singh, B., Yadav, A.K., Kaushal, S.: Reflection of plane wave in a micropolar thermoelastic solid half-space with diffusion. J. Therm. Stress. 39, 1378–1388 (2016)

    Article  Google Scholar 

  43. Tomar, S.K., Singh, J.: Plane waves in micropolar porous elastic solid. Int. J. Appl. Math. Mech. 2, 52–70 (2006)

    Google Scholar 

  44. Deswal, S., Kalkal, K.K.: Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51, 100–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Deswal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalkal, K.K., Sheoran, D. & Deswal, S. Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation. Acta Mech 231, 2849–2866 (2020). https://doi.org/10.1007/s00707-020-02676-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02676-w

Navigation